首页|基于Graph Transformer的知识库问题生成

基于Graph Transformer的知识库问题生成

扫码查看
知识库问答依靠知识库推断答案需大量带标注信息的问答对,但构建大规模且精准的数据集不仅代价昂贵,还受领域等因素限制。为缓解数据标注问题,面向知识库的问题生成任务引起了研究者关注,该任务是利用知识库三元组自动生成问题。现有方法仅由一个三元组生成的问题简短且缺乏多样性。为生成信息量丰富且多样化的问题,本文釆用Graph Transformer和BERT两个编码层来加强三元组多粒度语义表征以获取背景信息。在SimpleQuestions上的实验结果证明了该方法有效性。
基于Graph Transformer的知识库问题生成
Knowledge base question answering requires a large number of question answering pairs when relying on the knowledge base to infer answers.However,building a large-scale and accurate data set is not only expensive,but also limited by factors such as domain.To alleviate the problem of data labeling,the question generation from knowledge base has attracted the attention of researchers.This task is to use the triples of knowledge base to automatically generate the questions.However,existing methods only use a triple to generate questions that are short and lack diversity.To generate questions with rich and diverse information,this paper use two encoding layers,Graph Transformer and BERT,to enhance the multi-granular semantic representation of triples to obtain background information.Experimental results on the SimpleQuestions dataset prove the effectiveness of the method.

问题生成知识库语义表征知识库问答

胡月、周光有

展开 >

华中师范大学计算机学院 湖北武汉

问题生成 知识库 语义表征 知识库问答

Chinese National Conference on Computational Linguistic

Haikou(CN)

19th Chinese National Conference on Computational Linguistic

324-335

2020