首页|基于GPT-2和互信息的语言单位信息量对韵律特征的影响

基于GPT-2和互信息的语言单位信息量对韵律特征的影响

扫码查看
基于信息论的言语产出研究发现携带信息量越大的语言单位,其语音信号越容易被强 化。目前的相关研究主要通过自信息的方式衡量语言单位信息量,但该方法难以对长 距离的上下文语境进行建模。本研究引入基于预训练语言模型GPT-2和文本-拼音互信 息的语言单位信息量衡量方式,考察汉语的单词、韵母和声调信息量对语音产出的韵 律特征的影响。研究结果显示汉语中单词和韵母信息量更大律特征倾向于被 增强,证明了我们提出的方法是有效的。其中信息量效应在音长特比音高和音 强特征更显著。
基于GPT-2和互信息的语言单位信息量对韵律特征的影响
Research has shown that linguistic units carrying more information tend to be realized with enhanced speech signals. Most previous studies measure the information that a linguistic unit carries with its surprisal. However, such measurement lacks the ability to model long-distance contextual effects. The current study proposes novel measures of linguistic unit' s information by incorporating the GPT-2 pre-trained language model and mutual information (MI) between text and its phonemic transcription. We examine the prosodic effects of word surprisal and Mi-based information of final and tones in Mandarin Chinese. Results show that more information of both words and finals enhance prosodic prominence, proving the validity of our proposed measurements. Besides, the effects of information are more notable on duration feature compared with pitch and intensity feature.

GPT-2 ;信息量;韵律;音长;互信息

郝韵、解焱陆、林炳怀、张劲松

展开 >

北京语言大学信息科学学院,北京100083

腾讯科技,北京100083

GPT-2 ;信息量;韵律;音长;互信息

Chinese national conference on computational linguistic

Nanchang(CN)

The 21st Chinese national conference on computational linguistic

46-55

2022