首页|融合知识的多目标词联合框架语义分析模型

融合知识的多目标词联合框架语义分析模型

扫码查看
框架语义分析任务是自然语言处理领域的一项基础性任务。先前的研究工作大多针对 单目标词进行模型设计,无法一次性完成多个目标词的框架语义结构提取。本文提出 了一个面向多目标的框架语义分析模型,实现对多目标词的联合预测。该模型对框架 语义分析的各项子任务进行交互性建模,实现子任务间的双向交互。此外,本文利用 关系图网络对框架关系信息进行编码,将其作为框架语义学知识融入模型中。实验表 明,本文模型在不借助额外语料的情况下相比之前模型都有不同桎度的提高。消融实 验证明了本文模型设计的有效性。此外我们分析了模型目前存在的局限性以及未来的 改进方向。
融合知识的多目标词联合框架语义分析模型
Frame semantic parsing is a fundamental task in natural language processing. Most of the previous research work focuses on the design of the single-target model. Therefore, these models can't extract frame semantic structures of multiple targets in one time. This paper designs a frame semantic parsing model for multiple targets which jointly predicts the results of multiple targets. We model and achieve the bidirectional interaction among the sub tasks of frame semantic parsing. Moreover, Relational Graph Convolution Network (R-GCN) is utilized to encode the frame relation information, which is a way to exploit frame semantic knowledge into our model. The experiments shows that our model maintains good performance without extra training corpus. Ablation Study proves the effectiveness of our model.

框架语义分析;框架网络

陈旭东、郑策、常宝宝

展开 >

北京大学计算语言学教育部重点实验室,北京100871,北京大学软件与微电子学院,北京102600

北京大学计算语言学教育部重点实验室,北京100871

框架语义分析;框架网络

Chinese national conference on computational linguistic

Nanchang(CN)

The 21st Chinese national conference on computational linguistic

132-142

2022