首页|CCL23-Eval任务1系统报告:基于增量预训练与对抗学习的古籍命名实体识别

CCL23-Eval任务1系统报告:基于增量预训练与对抗学习的古籍命名实体识别

扫码查看
古籍命名实体识别是正确分析处理古汉语文本的基础步骤,也是深度挖掘、组织人文知识的重要前提。古汉语信息熵高、艰涩难懂,因此该领域技术研究进展缓慢。针对现有实体识别模型抗干扰能力差、实体边界识别不准确的问题,本文提出使用NEZHA-TCN与全局指针相结合的方式进行古籍命名实体识别。同时构建了一套古文数据集,该数据集包含正史中各种古籍文本,共87M,397,995条文本,用于NEZHA-TCN模型的增量预训练。在模型训练过程中,为了增强模型的抗干扰能力,引入快速梯度法对词嵌入层添加干扰。实验结果表明,本文提出的方法能够有效挖掘潜藏在古籍文本中的实体信息,F1值为95。34%。
CCL23-Eval任务1系统报告:基于增量预训练与对抗学习的古籍命名实体识别
GuNER is the basic step for analyzing and processing ancient Chinese texts correctly, which is also an important prerequisite for in-depth mining and organizing human knowledge. Due to its high information entropy and difficulty, the technological research progress in ancient Chinese filed is slow. To address the issues of poor anti-interference ability and inaccurate entity boundary recognition in existing entity recognition models, this article proposes a method of combining NEZHA-TCN with global pointer for ancient named entity recognition. At the same time, an ancient text dataset was constructed, which includes various ancient texts from the historical collection, totaling 87M and 397,995 texts, for incremental pretraining of the NEZHA-TCN model. In the process of model training, in order to enhance the anti-interference ability of the model, the fast gradient method is introduced to add interference in the word embedding layer. The experimental results show that the method proposed in this article can effectively mine the entities in the ancient texts, with an F1 value of 95.34%.

古籍命名实体识别增量预训练快速梯度法

李剑龙、于右任、刘雪阳、朱思文

展开 >

中国工商银行/北京##BISTU-IIIP/北京

BISTU-IIIP/北京

古籍命名实体识别 增量预训练 快速梯度法

Chinese national conference on computational linguistics

Harbin(CN)

22nd Chinese national conference on computational linguistics (CCL 2023): evaluations

23-33

2023