首页|大模型与知识图谱

大模型与知识图谱

大模型与知识图谱

扫码查看
知识图谱作为一种重要的知识组织形式,常被视为下一代人工智能技术的基础设施之一,引起了工业界和学术界的广泛关注。传统知识图谱表示方法主要使用符号显式地描述概念及其之间的结构关系,具有语义清晰和可解释性好等特点,但其知识类型有限,难以应对开放域应用场景。随着大规模预训练语言模型(大模型)的发展,将参数化的大模型视为知识图谱成为研究热点。在这一背景下,本文聚焦于大模型在知识图谱生命周期中的研究,总结分析了大模型在知识建模、知识获取、知识融合、知识管理、知识推理和知识应用等环节中的研究进展。最后,对大模型与知识图谱未来发展趋势予以展望。
As an important form of knowledge organization, knowledge graphs are widely recognized as one of the foundational infrastructures for the next generation of artificial intelligence technologies, receiving considerable interest from both industry and academia. Traditional methods for representing knowledge graphs mainly employ symbolic representations to explicitly describe concepts and their relationships, with clear semantics and good interpretability. However, these methods have limited coverage of knowledge types, making it challenging to apply them in open-domain scenarios. With the development of large pre-trained language models (large language models), most researchers have considered parameterized large language models as knowledge graphs. Thus, this paper focuses on the research of the life cycle of knowledge graphs in large language models. Specifically, we summarize the related work on knowledge modeling, knowledge acquisition, knowledge fusion, knowledge management, knowledge reasoning, and knowledge application. Finally, we anticipate the future development trends of large language models and knowledge graphs.

大模型知识图谱神经符号学习

陈玉博、郭少茹、刘康、赵军

展开 >

中国科学院自动化研究所复杂系统认知与决策实验室##中国科学院大学人工智能学院

中国科学院自动化研究所复杂系统认知与决策实验室

中国科学院自动化研究所复杂系统认知与决策实验室##中国科学院大学人工智能学院##北京智源人工智能研究院

大模型 知识图谱 神经符号学习

Chinese national conference on computational linguistics

Harbin(CN)

22nd Chinese national conference on computational linguistics (CCL 2023): frontier forum

67-76

2023