首页|Haar小波数值方法及其在力学问题中的应用

Haar小波数值方法及其在力学问题中的应用

扫码查看
小波分析是近几十年快速发展起来的一种数学工具,已经被运用于微分方程的数值求解。结构分析和工程力学中的问题多是以微分方程的形式来表征的,这类方程往往有高维、高阶和非线性等难点,所以需要有效的数值方法来求解。 本研究小组之前提出的一种基于Coiflet小波的积分配点方法,具有非常高的精度。但由于支撑集为[0,17]的Coiflet小波不具有解析表达式,其函数值和积分只能通过一系列相对复杂的计算在二分点处求取,增加了复杂度和计算量,这在一定程度上限制了该方法的使用。而Haar小波形式简单,相关的计算容易,作为一种具有显式表达式的小波,同时还具有规范正交性、紧支撑等性质。 本文针对求解精度上要求不是特别高的问题,基于Haar小波构造了积分配点方法。首先通过Haar小波的函数展开定理,分析了用小波积分的方法求解微分方程的原理和可行性。然后给出了方程中各项用函数的最高阶偏导数通过Haar小波及其积分表示的表达式以及边界条件的处理方法。最后给出了使用配点法离散方程和求解离散后得到的代数方程的方法,以及待求函数的重构。 为了检验该方法的性能,对于静力学的边值问题,我们选取一维Bratu方程和方板弯曲方程作为算例。其中Bratu方程采用了不同的表示非线性强弱的参数,方板弯曲问题包括小挠度和大挠度两种情形分别对应的线性和非线性方程,以及不同类型的载荷。通过对这些具有不同参数和特点的方程进行求解并进行误差分析,我们发现所构造的Haar小波积分配点法具不受方程阶数和非线性强弱影响的稳定的二阶收敛精度,误差也在可观的范围内。 对于动力学的初边值问题,我们选取流体力学中经典的槽道流和方腔流作为算例,用Haar小波积分配点法结合人工压缩算法求解了二维原始变量粘性不可压缩流动的N-S方程。其中将时间作为与空间坐标等价的变量处理,也给出了将边界条件纳入初始条件的处理方法。计算表明,使用较少的节点即可模拟出较好的流场结果,证明了该方法在求解动力学问题中复杂非线性方程的可行性。

王魁良

展开 >

力学问题 数值分析 Haar小波 积分配点法 收敛精度

硕士

力学·固体力学

王记增

2021

兰州大学

中文

O3