查看更多>>摘要:In this paper, we generalize the concepts of kernels, weak stationarity and white noise from undirected to directed graphs (digraphs) based on the Jordan decomposition of the shift operator. We characterize two types of kernels (type-I and type-II) and their corresponding localization operators for digraphs. We analytically study the interplay of these types of kernels with the concept of stationarity, specially the filtering properties. We also generalize graph Wiener filters and the related optimization framework to digraphs. For the special case of Gaussian processes, we show that the Wiener filtering again coincides with the MAP estimator. We further investigate the linear minimum mean-squared error (LMMSE) estimator for the non-Gaussian cases; the corresponding optimization problem simplifies to a Lyapunov matrix equation. We propose an algorithm to solve the Wiener optimization using proximal splitting methods. Finally, we provide simulation results to verify the provided theory.
查看更多>>摘要:Steganography is the art of covert communication that pursues the secrecy of concealment. In adaptive steganography, the most commonly used framework of steganography, the sender embeds a “secret message” signal within another “cover” signal with respect to a certain adaptive distortion function that measures the distortion incurred, contributing to the composite “stego” signal that resembles the cover, and the receiver extracts the “secret message” signal from the stego. When the communication channel between the sender and the receiver is noisy, robust steganography is needed, in which robust adaptive steganographic coding plays a central role. The existing robust adaptive steganographic coding methods can only provide very limited robustness, and they fail when the communication channel is bad. To ensure the success of covert communication, we propose a reliable robust adaptive steganographic coding scheme based on nested polar codes that possesses the highest robustness among the existing algorithms while the security performance is also maintained. Theoretically, we show that for the most important binary embedding, in the special case where the communication channel is a Binary Symmetric Channel (BSC), the proposed scheme is optimal under the constant distortion profile as the cover length $N$ tends to infinity through powers of two when the design embedding rate is large enough. Experimentally, our method is capable of making sure the perfect extraction of the secret message in situations where the embedding rate is large or the communication channel is bad, while the existing algorithms are not applicable in these scenarios.
查看更多>>摘要:This paper explores constrained non-convex personalized federated learning (PFL), in which a group of workers train local models and a global model, under the coordination of a server. To address the challenges of efficient information exchange and robustness against the so-called Byzantine workers, we propose a projected stochastic gradient descent algorithm for PFL that simultaneously ensures Byzantine-robustness and communication efficiency. We implement personalized learning at the workers aided by the global model, and employ a Huber function-based robust aggregation with an adaptive threshold-selecting strategy at the server to reduce the effects of Byzantine attacks. To improve communication efficiency, we incorporate random communication that allows multiple local updates per communication round. We establish the convergence of our algorithm, showing the effects of Byzantine attacks, random communication, and stochastic gradients on the learning error. Numerical experiments demonstrate the superiority of our algorithm in neural network training compared to existing ones.
查看更多>>摘要:We consider a least absolute deviation (LAD) approach to the robust phase retrieval problem that aims to recover a signal from its absolute measurements corrupted with sparse noise. To solve the resulting non-convex optimization problem, we propose a robust alternating minimization (Robust-AM) derived as an unconstrained Gauss-Newton method. To solve the inner optimization arising in each step of Robust-AM, we adopt two computationally efficient methods. We provide a non-asymptotic convergence analysis of these practical algorithms for Robust-AM under the standard Gaussian measurement assumption. These algorithms, when suitably initialized, are guaranteed to converge linearly to the ground truth at an order-optimal sample complexity with high probability while the support of sparse noise is arbitrarily fixed and the sparsity level is no larger than $1/4$. Additionally, through comprehensive numerical experiments on synthetic and image datasets, we show that Robust-AM outperforms existing methods for robust phase retrieval offering comparable theoretical performance guarantees.
查看更多>>摘要:Communication base stations can achieve high-precision tracking and accurate classification for multiple extended targets in the context of integrated communication and sensing by transmitting wideband signal. However, the time resources of the base stations are often limited. In the time-division operation mode, part of the time resources must be reserved to guarantee communication performance, while the rest of the resources must be properly allocated for better multi-target sensing performance. To deal with this, we develop a sensing task-oriented resource allocation (RA) scheme for wideband sensors. We first derive the Cramér–Rao lower bound for the estimation errors of position and shape parameters of the extended targets, and analyze their inside relations w.r.t. the resource vectors. Based on this, we construct the evaluation metric of tracking and classification performance, and subsequently build a non-smooth mathematical resource optimization model to maximize the target capacity within predetermined tracking and classification requirements. To solve this RA model, we then design an efficient two-step solution technique that incorporates dual transformation and discrete search. Finally, simulation results demonstrate that the proposed RA scheme can greatly increase the number of the well sensed targets within a limited sensing resource budget.
查看更多>>摘要:In this paper, we consider a cooperative sensing framework in the context of future multi-functional network with both communication and sensing ability, where one base station (BS) serves as a sensing transmitter and several nearby BSs serve as sensing receivers. Each receiver receives the sensing signal reflected by the target and communicates with the fusion center (FC) through a wireless multiple access channel (MAC) for cooperative target localization. To improve the localization performance, we present a hybrid information-signal domain cooperative sensing (HISDCS) design, where each sensing receiver transmits both the estimated time delay/effective reflecting coefficient and the received sensing signal sampled around the estimated time delay to the FC. Then, we propose to minimize the number of channel uses by utilizing an efficient Karhunen-Loéve transformation (KLT) encoding scheme for signal quantization and proper node selection, under the Cramér-Rao lower bound (CRLB) constraint and the capacity limits of MAC. A novel matrix-inequality constrained successive convex approximation (MCSCA) algorithm is proposed to optimize the wireless backhaul resource allocation, together with a greedy strategy for node selection. Despite the high non-convexness of the considered problem, we prove that the proposed MCSCA algorithm is able to converge to the set of Karush-Kuhn-Tucker (KKT) solutions of a relaxed problem obtained by relaxing the discrete variables. Besides, a low-complexity quantization bit reallocation algorithm is designed, which does not perform explicit node selection, and is able to harvest most of the performance gain brought by HISDCS. Finally, numerical simulations are presented to show that the proposed HISDCS design is able to significantly outperform the baseline schemes.
查看更多>>摘要:Graph Neural Networks (GNNs) have exhibited exceptional performance across diverse application domains by harnessing the inherent interconnectedness of data. Recent findings point towards instability of GNN under both feature and structure perturbations. The emergence of adversarial attacks targeting GNNs poses a substantial and pervasive threat, compromising their overall performance and learning capabilities. In this work, we first derive a theoretical bound on the global Lipschitz constant of GNN in the context of both feature and structure perturbations. Consequently, we propose a unifying approach, termed AdaLipGNN, for adversarial training of GNNs through an optimization framework which provides attack agnostic robustness. By seamlessly integrating graph denoising and network regularization, AdaLipGNN offers a comprehensive and versatile solution, extending its applicability and enabling robust regularization for diverse network architectures. Further, we develop a provably convergent iterative algorithm, leveraging block successive upper-bound minimization to learn robust and stable GNN hypothesis. Numerical results obtained from extensive experiments performed on real-world datasets clearly illustrate that the proposed AdaLipGNN outperforms other defence methods.
查看更多>>摘要:A leading family of algorithms for state estimation in dynamic systems with multiple sub-states is based on particle filters (PFs). PFs often struggle when operating under complex or approximated modelling (necessitating many particles) with low latency requirements (limiting the number of particles), as is typically the case in multi target tracking (MTT). In this work, we introduce a deep neural network (DNN) augmentation for PFs termed learning flock (LF). LF learns to correct a particles-weights set, which we coin flock, based on the relationships between all sub-particles in the set itself, while disregarding the set acquisition procedure. Our proposed LF, which can be readily incorporated into different PFs flow, is designed to facilitate rapid operation by maintaining accuracy with a reduced number of particles. We introduce a dedicated training algorithm, allowing both supervised and unsupervised training, and yielding a module that supports a varying number of sub-states and particles without necessitating re-training. We experimentally show the improvements in performance, robustness, and latency of LF augmentation for radar multi-target tracking, as well its ability to mitigate the effect of a mismatched observation modelling. We also compare and illustrate the advantages of LF over a state-of-the-art DNN-aided PF, and demonstrate that LF enhances both classic PFs as well as DNN-based filters.
Ricardo A. BorsoiKonstantin UsevichDavid BrieTülay Adali...
113-129页
查看更多>>摘要:Coupled tensor decompositions (CTDs) perform data fusion by linking factors from different datasets. Although many CTDs have been already proposed, current works do not address important challenges of data fusion, where: 1) the datasets are often heterogeneous, constituting different “views” of a given phenomena (multimodality); and 2) each dataset can contain personalized or dataset-specific information, constituting distinct factors that are not coupled with other datasets. In this work, we introduce a personalized CTD framework tackling these challenges. A flexible model is proposed where each dataset is represented as the sum of two components, one related to a common tensor through a multilinear measurement model, and another specific to each dataset. Both the common and distinct components are assumed to admit a polyadic decomposition. This generalizes several existing CTD models. We provide conditions for specific and generic uniqueness of the decomposition that are easy to interpret. These conditions employ uni-mode uniqueness of different individual datasets and properties of the measurement model. Two algorithms are proposed to compute the common and distinct components: a semi-algebraic one and a coordinate-descent optimization method. Experimental results illustrate the advantage of the proposed framework compared with the state of the art approaches.
Samy LabsirSara El BouchAlexandre RenauxJordi Vilà-Valls...
130-141页
查看更多>>摘要:This article addresses the problem of computing a Cramér-Rao bound when the likelihood of Euclidean observations is parameterized by both unknown Lie group (LG) parameters and covariance matrix. To achieve this goal, we leverage the LG structure of the space of positive definite matrices. In this way, we can assemble a global LG parameter that lies on the product of the two groups, on which LG's intrinsic tools can be applied. From this, we derive an inequality on the intrinsic error, which can be seen as the equivalent of the Slepian-Bangs formula on LGs. Subsequently, we obtain a closed-form expression of this formula for Euclidean observations. The proposed bound is computed and implemented on two real-world problems involving observations lying in $\mathbb{R}^{p}$, dependent on an unknown LG parameter and an unknown noise covariance matrix: the Wahba's estimation problem on $SE(3)$, and the inference of the pose in $SE(3)$ of a camera from pixel detections.