首页期刊导航|IEEE transactions on systems, man, and cybernetics, Part B. Cybernetics
期刊信息/Journal information
IEEE transactions on systems, man, and cybernetics, Part B. Cybernetics
IEEE Systems, Man, and Cybernetics Society
IEEE Systems, Man, and Cybernetics Society
双月刊
1083-4419
IEEE transactions on systems, man, and cybernetics, Part B. Cybernetics/Journal IEEE transactions on systems, man, and cybernetics, Part B. Cybernetics
查看更多>>摘要:Many search strategies have been exploited for the task of feature selection (FS), in an effort to identify more compact and better quality subsets. Such work typically involves the use of greedy hill climbing (HC), or nature-inspired heuristics, in order to discover the optimal solution without going through exhaustive search. In this paper, a novel FS approach based on harmony search (HS) is presented. It is a general approach that can be used in conjunction with many subset evaluation techniques. The simplicity of HS is exploited to reduce the overall complexity of the search process. The proposed approach is able to escape from local solutions and identify multiple solutions owing to the stochastic nature of HS. Additional parameter control schemes are introduced to reduce the effort and impact of parameter configuration. These can be further combined with the iterative refinement strategy, tailored to enforce the discovery of quality subsets. The resulting approach is compared with those that rely on HC, genetic algorithms, and particle swarm optimization, accompanied by in-depth studies of the suggested improvements.
查看更多>>摘要:Efficient methods to perform motion recognition have been developed using statistical tools. Those methods rely on primitive learning in a suitable space, for example, the latent space of the joint angle and/or adequate task spaces. Learned primitives are often sequential: A motion is segmented according to the time axis. When working with a humanoid robot, a motion can be decomposed into parallel subtasks. For example, in a waiter scenario, the robot has to keep some plates horizontal with one of its arms while placing a plate on the table with its free hand. Recognition can thus not be limited to one task per consecutive segment of time. The method presented in this paper takes advantage of the knowledge of what tasks the robot is able to do and how the motion is generated from this set of known controllers, to perform a reverse engineering of an observed motion. This analysis is intended to recognize parallel tasks that have been used to generate a motion. The method relies on the task-function formalism and the projection operation into the null space of a task to decouple the controllers. The approach is successfully applied on a real robot to disambiguate motion in different scenarios where two motions look similar but have different purposes.
查看更多>>摘要:This paper addresses the approximate optimal control problem for a class of parabolic partial differential equation (PDE) systems with nonlinear spatial differential operators. An approximate optimal control design method is proposed on the basis of the empirical eigenfunctions (EEFs) and neural network (NN). First, based on the data collected from the PDE system, the Karhunen–Loève decomposition is used to compute the EEFs. With those EEFs, the PDE system is formulated as a high-order ordinary differential equation (ODE) system. To further reduce its dimension, the singular perturbation (SP) technique is employed to derive a reduced-order model (ROM), which can accurately describe the dominant dynamics of the PDE system. Second, the Hamilton–Jacobi–Bellman (HJB) method is applied to synthesize an optimal controller based on the ROM, where the closed-loop asymptotic stability of the high-order ODE system can be guaranteed by the SP theory. By dividing the optimal control law into two parts, the linear part is obtained by solving an algebraic Riccati equation, and a new type of HJB-like equation is derived for designing the nonlinear part. Third, a control update strategy based on successive approximation is proposed to solve the HJB-like equation, and its convergence is proved. Furthermore, an NN approach is used to approximate the cost function. Finally, we apply the developed approximate optimal control method to a diffusion–reaction process with a nonlinear spatial operator, and the simulation results illustrate its effectiveness.
查看更多>>摘要:This paper proposes a new feature selection method using a mutual information-based criterion that measures the importance of a feature in a backward selection framework. It considers the dependency among many features and uses either one of two well-known probability density function estimation methods when computing the criterion. The proposed approach is compared with existing mutual information-based methods and another sophisticated filter method on many artificial and real-world problems. The numerical results show that the proposed method can effectively identify the important features in data sets having dependency among many features and is superior, in almost all cases, to the benchmark methods.
查看更多>>摘要:Conventional regression methods, such as multivariate linear regression (MLR) and its extension principal component regression (PCR), deal well with the situations that the data are of the form of low-dimensional vector. When the dimension grows higher, it leads to the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. However, little attention has been paid to such a problem. This paper first adopts an in-depth investigation to the USP in PCR, which answers three questions: 1) Why is USP produced? 2) What is the condition for USP, and 3) How is the influence of USP on regression. With the help of the above analysis, the principal components selection problem of PCR is presented. Subsequently, to address the problem of PCR, a multivariate multilinear regression (MMR) model is proposed which gives a substitutive solution to MLR, under the condition of multilinear objects. The basic idea of MMR is to transfer the multilinear structure of objects into the regression coefficients as a constraint. As a result, the regression problem is reduced to find two low-dimensional coefficients so that the principal components selection problem is avoided. Moreover, the sample size needed for solving MMR is greatly reduced so that USP is alleviated. As there is no closed-form solution for MMR, an alternative projection procedure is designed to obtain the regression matrices. For the sake of completeness, the analysis of computational cost and the proof of convergence are studied subsequently. Furthermore, MMR is applied to model the fitting procedure in the active appearance model (AAM). Experiments are conducted on both the carefully designed synthesizing data set and AAM fitting databases verified the theoretical analysis.
查看更多>>摘要:This paper is concerned with the problem of ${cal H}_{infty}$ model reduction for Takagi–Sugeno (T–S) fuzzy stochastic systems. For a given mean-square stable T–S fuzzy stochastic system, our attention is focused on the construction of a reduced-order model, which not only approximates the original system well with an ${cal H}_{infty}$ performance but also translates it into a linear lower dimensional system. Then, the model reduction is converted into a convex optimization problem by using a linearization procedure, and a projection approach is also presented, which casts the model reduction into a sequential minimization problem subject to linear matrix inequality constraints by employing the cone complementary linearization algorithm. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed methods.
查看更多>>摘要:This paper investigates the joint-structured-sparsity-based methods for transient acoustic signal classification with multiple measurements. By joint structured sparsity, we not only use the sparsity prior for each measurement but we also exploit the structural information across the sparse representation vectors of multiple measurements. Several different sparse prior models are investigated in this paper to exploit the correlations among the multiple measurements with the notion of the joint structured sparsity for improving the classification accuracy. Specifically, we propose models with the joint structured sparsity under different assumptions: same sparse code model, common sparse pattern model, and a newly proposed joint dynamic sparse model. For the joint dynamic sparse model, we also develop an efficient greedy algorithm to solve it. Extensive experiments are carried out on real acoustic data sets, and the results are compared with the conventional discriminative classifiers in order to verify the effectiveness of the proposed method.
查看更多>>摘要:In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.
查看更多>>摘要:This paper focuses on the problem of neural-network-based decentralized adaptive output-feedback control for a class of nonlinear strict-feedback large-scale stochastic systems. The dynamic surface control technique is used to avoid the explosion of computational complexity in the backstepping design process. A novel direct adaptive neural network approximation method is proposed to approximate the unknown and desired control input signals instead of the unknown nonlinear functions. It is shown that the designed controller can guarantee all the signals in the closed-loop system to be semiglobally uniformly ultimately bounded in a mean square. Simulation results are provided to demonstrate the effectiveness of the developed control design approach.
查看更多>>摘要:The Gaussian process (GP) latent variable model (GPLVM) has the capability of learning low-dimensional manifold from highly nonlinear data of high dimensionality. As an unsupervised dimensionality reduction (DR) algorithm, the GPLVM has been successfully applied in many areas. However, in its current setting, GPLVM is unable to use label information, which is available for many tasks; therefore, researchers proposed many kinds of extensions to the GPLVM in order to utilize extra information, among which the supervised GPLVM (SGPLVM) has shown better performance compared with other SGPLVM extensions. However, the SGPLVM suffers in its high computational complexity. Bearing in mind the issues of the complexity and the need of incorporating additionally available information, in this paper, we propose a novel SGPLVM, called supervised latent linear GPLVM (SLLGPLVM). Our approach is motivated by both SGPLVM and supervised probabilistic principal component analysis (SPPCA). The proposed SLLGPLVM can be viewed as an appropriate compromise between the SGPLVM and the SPPCA. Furthermore, it is also appropriate to interpret the SLLGPLVM as a semiparametric regression model for supervised DR by making use of the GP to model the unknown smooth link function. Complexity analysis and experiments show that the developed SLLGPLVM outperforms the SGPLVM not only in the computational complexity but also in its accuracy. We also compared the SLLGPLVM with two classical supervised classifiers, i.e., a GP classifier and a support vector machine, to illustrate the advantages of the proposed model.