查看更多>>摘要:Entecavir treatment failure can be observed in compliant patients despite an absence of detectable resistance mutations by Pol/RT Sanger sequencing. We hypothesized that these unexplained treatment failures could rely on other mechanisms of viral resistance, especially on mutations selected outside of the Pol/RT domain. Partial virological response to entecavir was observed in three patients treated with immunosuppressive drugs, without selection of Pol/RT resistance mutations. Mutations selected in the whole HBV genome during entecavir treatment and potentially associated with resistance were searched for using deep sequencing and characterized using a phenotypic resistance assay. Mutations Q206K (pre-core/core), Q120K (pre-S1/pre-S2, T-cell epitope) and A300E (spacer domain) were selected during entecavir treatment in patient #1 but were not associated with an increased level of resistance to entecavir or an increase in HBV replication capacity. Core promoter mutations T1753G, A1762T and G1764A were present as major mutations before and after treatment in patient #1. HBs Ag immune escape mutations were present as major mutations before and after treatment in patients #2 (sK122R, sT126I, sP127S and sG145R) and #3 (sM133I). We demonstrated that PVR to entecavir does not require selection of any resistance mutation in the whole HBV genome. Our results demonstrate that major mutations can be selected outside of the Pol/RT domain before or during entecavir treatment. These mutations could contribute to entecavir treatment failure by other mechanisms than an increased level of resistance.
查看更多>>摘要:Antimicrobial peptides (AMP) comprise a wide range of small molecules with direct antibacterial activity and immunostimulatory role and are proposed as promising substitutes of the antibiotics. Additionally, they also exert a role against other pathogens such as viruses and fungi less evaluated. NK-lysin, a human granulysin orthologue, possess a double function, taking part in the innate immunity as AMP and also as direct effector in the cell-mediated cytotoxic (CMC) response. This molecule is suggested as a pivotal molecule involved in the defence upon nervous necrosis virus (NNV), an epizootic virus provoking serious problems in welfare and health status in Asian and Mediterranean fish destined to human consumption. Having proved that NK-lysin derived peptides (NKLPs) have a direct antiviral activity against NNV in vitro, we aimed to evaluate their potential use as a prophylactic treatment for European sea bass (Dicentrarchus labrax), one of the most susceptible cultured-fish species. Thus, intramuscular injection of synthetic NKLPs resulted in a very low transcriptional response of some innate and adaptive immune markers. However, the injection of NKLPs ameliorated disease signs and increased fish survival upon challenge with pathogenic NNV. Although NKLPs showed promising results in treatments against NNV, more efforts are needed to understand their mechanisms of action and their applicability to the aquaculture industry.
查看更多>>摘要:Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus of African origin that is transmitted by Aedes mosquitoes. ZIKV was historically limited to Africa and Asia, where mild cases were reported. However, ZIKV has recently been responsible for major global outbreaks associated with a wide range of neurological complications. Since no antiviral therapy exists for ZIKV, drug discovery research for ZIKV is crucial. Intracellular lipids regulated by sterol regulatory element-binding proteins (SREBPs) are important in flavivirus pathogenesis. PF-429242 has been reported to inhibit the activity of site-1 protease (S1P), which regulates the expression of SREBP target genes. Our primary objective in this study is to elucidate the mechanism of the antiviral activity of PF-429242 against the African genotype (ZIKV(MR-766)) and Asian genotypes (ZIKV(H/PF 2013) and ZIKV (PRVABC59)) using several primate-derived cell lines. The virus titer was determined via a focus-forming assay; we used flow cytometry to quantify intracellular lipids in ZIKV-infected and mock-treated cells. The PF-429242 molecule effectively suppressed ZIKV infection in neuronal cell lines; T98G, U-87MG, SK-N-SH and primary monocytes cell, indicating that PF-429242 molecule can be used therapeutically. A strong reduction in ZIKV replication was observed at 12 mu M and 30 mu M in in neuronal cell lines and primary monocytes, respectively. Interestingly, the inhibitory effects of the PF-429242 molecule were observed when it was tested on various ZIKV-lineage infections. Lipid quantification reveals that ZIKV increases lipogenesis in infected cells, while the exogenous addition of cholesterol effectively blocks ZIKV replication. Furthermore, the supplementation of oleic acid increases the ZIKV titer. Fenofibrate, an inhibitor of lipid droplet formation, reduces the ZIKV titer. Collectively, our results demonstrate that the development of antiviral drugs against ZIKV could be based on key regulators of lipid metabolism. In addition, this study reveals that the mechanism of the PF-429242-mediated suppression among flavivirus infections is not entirely identical. Our results warrant further evaluation of PF-429242 as a prospective antiviral drug, given the multiple advantageous properties of this compound, such as its limited toxicity, neuroprotective properties, and broad spectrum of capabilities.
Landesman, YosefKashyap, TrinayanMurray, JackelynWalker, Christopher J....
11页
查看更多>>摘要:The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the recent global pandemic. The nuclear export protein (XPO1) has a direct role in the export of SARS-CoV proteins including ORF3b, ORF9b, and nucleocapsid. Inhibition of XPO1 induces anti-inflammatory, anti-viral, and antioxidant pathways. Selinexor is an FDA-approved XPO1 inhibitor. Through bioinformatics analysis, we predicted nuclear export sequences in the ACE-2 protein and confirmed by in vitro testing that inhibition of XPO1 with selinexor induces nuclear localization of ACE-2. Administration of selinexor inhibited viral infection prophylactically as well as therapeutically in vitro. In a ferret model of COVID-19, selinexor treatment reduced viral load in the lungs and protected against tissue damage in the nasal turbinates and lungs in vivo. Our studies demonstrated that selinexor downregulated the pro-inflammatory cytokines IL-1 beta, IL-6, IL-10, IFN-gamma, TNF-alpha, and GMCSF, commonly associated with the cytokine storm observed in COVID-19 patients. Our findings indicate that nuclear export is critical for SARS-CoV-2 infection and for COVID-19 pathology and suggest that inhibition of XPO1 by selinexor could be a viable anti-viral treatment option.
查看更多>>摘要:Growing evidence supports that chronic or latent infection of the central nervous system might be implicated in Alzheimer's disease (AD). Among them, Herpes simplex virus type 1 (HSV-1) has emerged as a major factor in the etiology of the disease. Our group is devoted to the study of the relationship among HSV-1, oxidative stress (OS) and neurodegeneration. We have found that HSV-1 induces the main neuropathological hallmarks of AD, including the accumulation of intracellular amyloid beta (A beta), hyperphosphorylated tau protein and autophagic vesicles, that OS exacerbates these effects, and that matrix metalloproteinase 14 (MMP-14) participates in the alterations induced by OS. In this work, we focused on the role of MMP-14 in the degenerative markers raised by HSV-1 infection. Interestingly, we found that MMP-14 blockage is a potent inhibitor of HSV-1 infection efficiency, that also reduces the degeneration markers, accumulation of A beta and hyperphosphorylated tau, induced by the virus. Our results point to MMP-14 as a potent antiviral target to control HSV-1 infection and its associated neurodegenerative effects.
Schang, Luis M.Hu, MiYaoCortes, Esteban FloresSun, Kairui...
15页
查看更多>>摘要:The ability to establish, and reactivate from, latent infections is central to the biology and pathogenesis of HSV-1. It also poses a strong challenge to antiviral therapy, as latent HSV-1 genomes do not replicate or express any protein to be targeted. Although the processes regulating the establishment and maintenance of, and reactivation from, latency are not fully elucidated, the current general consensus is that epigenetics play a major role. A unifying model postulates that whereas HSV-1 avoids or counteracts chromatin silencing in lytic infections, it becomes silenced during latency, silencing which is somewhat disrupted during reactivation. Many years of work by different groups using a variety of approaches have also shown that the lytic HSV-1 chromatin is distinct and has unique biophysical properties not shared with most cellular chromatin. Nonetheless, the lytic and latent viral chromatins are typically enriched in post translational modifications or histone variants characteristic of active or repressed transcription, respectively. Moreover, a variety of small molecule epigenetic modulators inhibit viral replication and reactivation from latency. Despite these successes in culture and animal models, it is not obvious how epigenetic modulation would be used in antiviral therapy if the same epigenetic mechanisms governed viral and cellular gene expression. Recent work has highlighted several important differences between the viral and cellular chromatins, which appear to be of consequence to their respective epigenetic regulations. In this review, we will discuss the distinctiveness of the viral chromatin, and explore whether it is regulated by mechanisms unique enough to be exploited in antiviral therapy.
查看更多>>摘要:We present here a case study of an antibody-engineering platform that selects, modifies, and assembles antibody parts to construct novel antibodies. A salient feature of this platform includes the role of amino acid networks in optimizing framework regions (FRs) and complementarity determining regions (CDRs) to engineer new antibodies with desired structure-function relationships. The details of this approach are described in the context of its utility in engineering ZAb_FLEP, a potent anti-Zika virus antibody. ZAb_FLEP comprises of distinct parts, including heavy chain and light chain FRs and CDRs, with engineered features such as loop lengths and optimal epitope-paratope contacts. We demonstrate, with different test antibodies derived from different FR-CDR combinations, that despite these test antibodies sharing high overall sequence similarity, they yield diverse functional readouts. Furthermore, we show that strategies relying on one dimensional sequence similarity-based analyses of antibodies miss important structural nuances of the FR-CDR relationship, which is effectively addressed by the amino acid networks approach of this platform.
Thuc Nguyen Dan DoDonckers, KimVangeel, LauraChatterjee, Arnab K....
8页
查看更多>>摘要:There are, besides remdesivir, no approved antivirals for the treatment of SARS-CoV-2 infections. To aid in the search for antivirals against this virus, we explored the use of human tracheal airway epithelial cells (HtAEC) and human small airway epithelial cells (HsAEC) grown at the air-liquid interface (ALI). These cultures were infected at the apical side with one of two different SARS-CoV-2 isolates. Each virus was shown to replicate to high titers for extended periods of time (at least 8 days) and, in particular an isolate with the D614G in the spike (S) protein did so more efficiently at 35 degrees C than 37 degrees C. The effect of a selected panel of reference drugs that were added to the culture medium at the basolateral side of the system was explored. Remdesivir, GS-441524 (the parent nucleoside of remdesivir), EIDD-1931 (the parent nucleoside of molnupiravir) and IFN (beta 1 and lambda 1) all resulted in dose-dependent inhibition of viral RNA and infectious virus titers collected at the apical side. However, AT-511 (the free base form of AT-527 currently in clinical testing) failed to inhibit viral replication in these in vitro primary cell models. Together, these results provide a reference for further studies aimed at selecting SARS-CoV-2 inhibitors for further preclinical and clinical development.
查看更多>>摘要:As a cytosol ubiquitin ligase and antibody receptor, Tripartite motif-containing 21 (TRIM21) has been reported to mediate the restriction of hepatitis B virus (HBV) through an HBx-antibody-dependent intracellular neutralization (ADIN) mechanism. However, whether TRIM21 limits HBV replication by targeting viral proteins remains unclarified. In this study, we demonstrate that TRIM21 inhibits HBV gene transcription and replication in HBV plasmid transfected and HBV-infected hepatoma cells. RING and PRY-SPRY domains are involved in this activity. TRIM21 interacts with HBx protein and targets HBx for ubiquitination and proteasomal degradation, leading to impaired HBx-mediated degradation of structural maintenance of chromosomes 6 (Smc6) and suppression of HBV replication. TRIM21 fails to restrict the replication of an HBx-deficient HBV. And knock-down of Smc6 largely impairs the anti-HBV activity of TRIM21 in HepG2 cells. In a hydrodynamic injection (HDI)-based HBV mouse model, we confirm an in vivo anti-HBV and anti-HBx therapeutic effect of TRIM21 by over-expression or knocking-out strategy. Our findings reveal a novel mechanism that TRIM21 restricts HBV replication through targeting HBx-Smc5/6 pathway, which may have an implication in the future TRIM21-based therapeutic application.
查看更多>>摘要:As one of the principal etiological agents of hand, foot, and mouth disease (HFMD), enterovirus 71 (EV71) is associated with severe neurological complications or fatal diseases, while without effective medications thus far. Here we applied dually activated Michael acceptor to develop a series of reversible covalent compounds for EV71 3C protease (3C(pro)), a promising antiviral drug target that plays an essential role during viral replication by cleaving the precursor polyprotein, inhibiting host protein synthesis, and evading innate immunity. Among them, cyanoacrylate and Boc-protected cyanoarylamide derivatives (SLQ-4 and SLQ-5) showed effective antiviral activity against EV71. The two inhibitors exhibited broad antiviral effects, acting on RD, 293T, and Vero cell lines, as well as on EV71 A, B, C, CVA16, and CVB3 viral strains. We further determined the binding pockets between the two inhibitors and 3C(pro) based on docking studies. These results, together with our previous studies, provide evidence to elucidate the mechanism of action of these two reversible covalent inhibitors and contribute to the development of clinically effective medicines to treat EV71 infections.