查看更多>>摘要:Eugenosedin-A (Eu-A) has been shown to protect against hyperglycemia- and hyperlipidemia-induced metabolic syndrome. We investigated the relationship of K_Atp channel activities and insulin secretion by Eu-A in vitro in pancreatic β-cells, and examined the effect of Eu-A on streptozotocin (STZ)/nicotinamide (NA)-induced type 2 diabetes mellitus (T2DM) in vivo. We isolated pancreatic islets from adult male Wistar rats (250-350 g) and identified pancreatic β-cells by the cell size, capacitance and membrane potential. Perforated patch-clamp and inside-out recordings were used to monitor the membrane potential (current-clamp mode) and channel activity (voltage-clamp mode) of β-cells. The membrane potential of β-cells was raised by Eu-A and reversed by the K_atp channel activator diazoxide. Eu-A inhibited the K_atp channel activity measured at — 60 mV and increased the intracellular calcium concentration ([Ca~2+]j), resulting in enhanced insulin secretion. Eu-A also reduced Kir6.2 protein on the cell membrane and scattered in the cytosol under normal glucose conditions (5.6 mM). In our animal study, rats were divided into normal and STZ/NA-induced T2DM groups. Normal rats fed with regular chow were divided into control and control+Eu-A (5 mg/kg/day, i.p.) groups. The STZ/N A-induced diabetic rats fed with a high-fat diet (HFD) were divided into three groups: T2DM, T2DM+Eu-A (5 mg/kg/day, i.p.), and T2DM+glibenclamide (0.5 mg/kg/day, i.p.; a KAtp channel inhibitor). Both Eu-A and glibenclamide decreased the rats' blood glucose, prevented weight gain, and enhanced insulin secretion. We found that Eu-A blocked pancreatic β-cell K_Atp channels, caused membrane potential depolarization, and stimulated Ca~2+ influx, thus increasing insulin secretion. Furthermore, Eu-A decreased blood glucose and increased insulin levels in T2DM rats. These results suggested that Eu-A might have clinical benefits for the control of T2DM and its complications.
Cristina Ma Díaz-PerdigonesAraceli Munoz-GarachMaría Dolores Alvarez-BermudezIsabel Moreno-Indias...
1页
查看更多>>摘要:Objective: Metformin modifies the gut microbiome in type 2 diabetes and gastrointestinal tolerance to metformin could be mediated by the gut microbiome. Methods: We enrolled 35 patients with type 2 diabetes not receiving treatment with metformin due to suspected gastrointestinal intolerance. Metformin was reintroduced at 425 mg, increasing 425 mg every two weeks until reaching 1700 mg per day. According to the occurrence of metformin-related gastrointestinal symptoms, patients were classified into three groups: early intolerance, non-tolerant, and tolerant. Gut microbiota was profiled with 16 S rRNA. This sequencing aimed to determine the differences in the baseline gut microbiota in all groups and prospectively in the tolerant and non-tolerant groups. Results: The classification resulted in 15 early intolerant, 10 tolerant, and 10 non-tolerant subjects. Early tolerance was characterized by a higher abundance of Subdoligranulum; while Veillonella and Serratia were higher in the non-tolerant group. The tolerant group showed enrichment of Megamonas, Megamonas rupellensis, and Phascolarctobacterium spp; Ruminococcus gnavus was lower in the longitudinal analysis. At the end point Pre-votellaceae, Prevotella stercorea, Megamonas funiformis, Bacteroides xylanisolvens, and Blautiaproducta had a higher relative abundance in the tolerant group compared to the non-tolerant group. Subdoligranulum, Ruminococcus torques-1, Phascolarctobacterium faecium, and Eubacterium were higher in the non-tolerant group. The PICRUSt analysis showed a lower activity of the amino acid biosynthesis pathways and a higher sugar degradation pathway in the intolerant groups. Conclusions: Gut microbiota of subjects with gastrointestinal intolerance depicted taxonomic and functional differences compared to tolerant patients, and this changed differently after metformin administration
查看更多>>摘要:Testicular development during juvenile is crucial for subsequent male reproductive function. However, it remains poorly understood about the contribution of the testis microenvironment to human germ cell maturation. Therefore, we systematically analyzed scRNA-seq transcriptome and found the dramatic changes in cell-type composition in human testis during puberty. Then we constructed cell-cell communication networks between germ cells and somatic cells in the juvenile testis, which may be achieved via immune-related pathways. Our results showed that maturation-promoting factors are the switches of the Sertoli cells that drive sperm maturation. Furthermore, we found that Bisphenol A(BPA) enhanced the maturation and growth of germ cells through the Sertoli cell's secretory protein. Finally, our results indicate Bisphenol A would lead to the dysregulation of secreted protein expression in Sertoli cells during spermatogenesis, which in turn has direct cytotoxicity to Sertoli cells. Bisphenol A is one of the underlying causes of non-obstructive azoospermia (NOA). In summary, our results reveal the reproductive toxicity and molecular mechanism of Bisphenol A in Sertoli cells and male reproduction. Provide a reference for the toxicity of Bisphenol A to human reproduction.
查看更多>>摘要:Aims: The purpose of this study was to investigate the mechanism and effects of "Danggui-kushen" herb pair (DKHP) better than single drug in ischemic heart disease (IHD). Methods: IHD model was established by left anterior descending branch of coronary artery in rats. Rats were randomized into six groups and oral administration for 7 days: control, model, Danshen dripping pills (DS) (5.103 g/kg), Danggui (DG) (2.7 g/kg), Kushen (KS) (2.7 g/kg) and DKHP (2.7 g/kg). Electrocardiogram (ECG), myocardial infarction and damage assessment, histological inspection analysis, and various biochemical indexes of myocardial tissue were measured to evaluate the myocardial damage and the protective effects of drugs. The inflammatory levels were identified by HE staining and serum cytokine, and the expression of hypoxia-inducible factor 1α (HIF-1α), inhibitor kappa B kinaseβ (IKKβ) and nuclear transcription factor kappa B (NF-κB) were measured by immunohistochemistry. Key findings: The results suggested that: compared with the control group, model group showed significantly myocardial tissue abnormalities, and increased levels of inflammatory cytokine. Treatment with drugs inhibited the increase of α-hydroxybutyrate dehydrogenase (α-HBDH), creatine kinase (CK), creatinekinase isoenzyme (CK-MB), interleukin 1 (IL-1) and interleukin 6 (IL-6). The results of immunohistochemical showed that drugs-treatment inhibited the expression of IKKβ and the P-p65, increased the expression of HIF-1α, which demonstrated that the anti-inflammatory effects of DKHP was achieved by suppressing of NF-κB signaling. Conclusion: These observations indicated that DKHP can ameliorate myocardial injury better than single. And these are related to the inhibition of NF-κB and actives HIF-1α signaling.
查看更多>>摘要:Objective: The effect of active ingredients of Chaishaoliujun Decoction (CD) on chronic atrophic gastritis (CAG) was screened by network pharmacological method and verified by preliminary experiment. Methods: Firstly, the active ingredients and drug targets of CD were retrieved in TCMSP database; CAG-related targets from PharmGkb, OMIM, GeneCards and DrugBank databases were collected as well. Secondly, the drug targets and disease targets were mapped to obtain the intersection targets. PPI network and active ingredient-common target network were constructed for the intersection targets obtained and KEGG enrichment analysis was also carried out. Finally, the core active ingredient (kaempferol), effective targets (IL-1β, IL-6) and hedgehog signaling pathway were verified by animal experiments. Results: There were 137 active ingredients, 243 potential target so and 48 intersection targets with CAG in CD. 147 KEGG enrichment pathways were obtained, mainly involving JAK/STAT signaling pathway, PI3K/Akt signaling pathway, hedgehog signaling pathway, etc. The results of animal experiments showed: The content of IL-1β and IL-6 in model group was significantly increased compared with the normal group, while the mRNA and protein expressions of Shh, Ptch1 and Gli1 were also significantly decreased (P < 0.05); compared with model group, the content of IL-1β and IL-6 in the vitacoenzyme group, the CD group and the kaempferol group were significantly decreased, while the mRNA and protein expressions of Shh, Ptch1 and Gli1 were significantly increased (P < 0.05). Conclusion: Kaempferol, the active ingredient of CD, could reduce the levels of IL-6 and IL-1β by regulating hedgehog signaling pathway so as to play a role in the treatment of CAG. Hence this paper could provide the methodological basis and theoretical basis for further revealing the pharmacological mechanism of CD.
查看更多>>摘要:The gut barrier - including tight junction proteins (TJPs) and mucus layers, is the first line of defense against physical, chemical or pathogenic incursions. This barrier is compromised in various health disorders. Capsaicin, a dietary agonist of Transient receptor potential vanilloid 1 (TRPV1) channel, is reported to alleviate the complications of obesity. While it is well known to improve energy expenditure and metabolism, and prevent dys-biosis, the more local effects on the host gut - particularly the gut barrier and mucus system remain elusive. To investigate the effect of capsaicin on the gut barrier and mucus production and to understand the involvement of mucus, bacteria, and TRPV1 in these phenomena, we employed a diet-induced obesity model in C57BL/6 mice, and capsaicin (2 mg/kg/day p.o.) or mucin (1 g/kg/day p.o.) as interventions, for 12 weeks. Parameters like weight gain, glucose homeostasis, TJPs expression, mucus staining, intestinal permeability etc were studied. 16 S rDNA sequencing and in vitro Ca~2+ measurement experiments were performed to explore the role of microbiota in the beneficial effects. Mucin feeding reflected several anti-obesity effects produced by capsaicin, suggesting that mucus modulation might play a crucial role in capsaicin-induced anti-obesity effects. 16 S rDNA sequencing and in vitro Ca~2+ measurement experiments pointed to TRPV1 modulation by bacteria besides capsaicin. Capsaicin, bacteria and the host mucus system seem to act in a cyclic cascade involving TRPV1, which can be activated by capsaicin and various bacteria. These findings provide new insight into the role of TRPV1 in maintaining a healthy gut environment.
查看更多>>摘要:Background: While the number of cases of vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) has been increasing every year, there are currently no clinically effective treatment methods. At present, Xi-Xian-Tong-Shuan capsule is predominantly used in patients with acute cerebral ischemia; however, its protective effect on CCH has rarely been reported. Objective: To explore the underlying mechanisms by which Xi-Xian-Tong-Shuan capsule alleviates cognitive impairment caused by CCH. Methods: A model of CCH was established in specific-pathogen-free (SPF)-grade male Sprague-Dawley (SD) rats using bilateral common carotid artery occlusion (BCCAO). Xi-Xian-Tong-Shuan capsules were intragastrically administered for 42 days after the BCCAO surgery. We then assessed for changes in cognitive function, expression levels of pro-inflammatory factors, and coagulation function as well as for the presence of white matter lesions and neuronal loss. One-way ANOVA and Tukey's test were used to analyze the experimental data. Results: The rats showed significant cognitive dysfunction after the BCCAO surgery along with white matter lesions, a loss of neurons, and elevated levels of inflammatory factors, all of which were significantly reversed after intervention with Xi-Xian-Tong-Shuan capsules. Conclusion: Xi-Xian-Tong-Shuan capsules can ameliorate vascular cognitive impairment in CCH rats by preventing damage of white matter, reducing neuronal loss, and inhibiting the expression of pro-inflammatory factors. Our study provides a new reference for the clinical treatment of chronic cerebral ischemia with Xi-Xian-Tong-Shuan capsules.
Amir Mohamed AbdelhamidSameh SaberMahmoud E. YoussefAhmed Gaafar Ahmed Gaafar...
1页
查看更多>>摘要:Hepatocellular carcinoma (HCC) is on the rise worldwide, and its incidence in diabetic patients is two to three times that of non-diabetics. Current therapeutic options fail to provide considerable survival benefits to patients with HCC. There is a strong possibility that the FDA-approved antidiabetic combination of empagliflozin and metformin could show complementary effects to control HCC progression. However, their multitarget effects have not yet been studied on HCC development. Therefore, the present study aims to evaluate the antitumorigenic activity of this combination in non-diabetic mice with diethylnitrosamine-induced HCC. Empagliflozin/metformin combination prolonged survival and improved histological features of mice livers. Additionally, Empagliflozin/metformin showed anti-inflammatory potential and relieved oxidative stress. On the one hand these effects are likely attributed to the ability of metformin to inactivate NF-κB in an AMPK-dependent mechanism and on the other hand to the ability of the empagliflozin to inhibit the MAPKs, p38 and ERK1/2. Empagliflozin also showed a less robust effect on AMPK than that of metformin. Moreover, empagliflozin enhanced the autophagy inducing activity of metformin. Furthermore, empagliflozin/metformin exhibited increased apoptotic potential. Consequently, empagliflozin augmented the antitumorigenic function of metformin by exerting better control of angiogenesis, and metastasis. To conclude, our findings suggest empagliflozin as an ideal adjunct to metformin for the inhibition of HCC progression. In addition, since the incidence of hypoglycemia is minimal due to insulin-independent mechanism of action of both treatments, empagliflozin/metformin could be a promising therapeutic modality for the management of diabetic patients with HCC; and even non diabetic ones.
Aya A. ShokryRiham A. El-ShiekhGehan KamelAlaa F. Bakr...
1页
查看更多>>摘要:Ivy leaves (Hedera helix) is a traditional plant used for common cold, cough, and bronchial disorders and can be used for rheumatoid arthritis (RA) as an attempt in alternative medicine. RA is a chronic autoimmune disease characterized by its increasing frequency and adverse consequences. There is an urgent need for a long-term therapy that has favorable biological effects and is less expensive than the already authorized synthetic medicines. This study aimed to determine the anti-arthritic potentials of Hedera helix with determination of the bioactive fraction and discovery of its second-generation metabolites by means of LC/MS. The total ivy ethanolic extract (TIE-E), saponins fraction (Sap-F) and flavonoids fraction (Flav-F) were investigated for their in-vitro anti-arthritic effects and in-vivo by Adjuvant-induced arthritis (AIA) using Complete Freund's Adjuvant (0.1 mL, CFA) intradermal relative to the usual dose of ibuprofen (5 mg/kg). We examined the physical alterations, rheumatoid biomarkers, cytokines that cause and inhibit inflammation, markers of oxidative stress, hyaluroni-dase and β-glucuronidase enzyme activity. Each paw's histopathology was also evaluated. The chemical profiles of TIE-E were studied using LC/MS in both positive and negative ionization modes. TIE-E (200 mg/kg) and Flav-F (100 mg/kg) significantly (P < 0.05) lowered the edema of the paws, serum immunological indicators, inflammatory cytokines, degenerative enzymes, and indicators of reactive oxygen species with increasing in the anti-inflammatory cytokines. Our findings suggest that extracts of ivy leaves might be used effectively to treat rheumatoid arthritis, where its flavonoid content is responsible for that, and it is able to repress biochemical, oxidative, and pathological changes associated with (AIA) Adjuvant-induced arthritis.
查看更多>>摘要:Research on the bioactive components of herbal medicines have been conducted mainly on the secondary metabolites of herbal plants. Accordingly, limited information is available on primary metabolites (carbohydrates, amino acids, lipids, and nucleic acids) and their biological effects. Here, we focused on the heat-resistant RNA of a decoction of Glycyrrhizae Radix and showed its immunostimulatory effects. The RNA activated NF-κB/AP-1 and induced TNF-α production in murine macrophages. Further analysis revealed that the RNA was around 90 nucleotides long. RNA sequencing (RNA-Seq) by next generation sequencing (NGS) showed that approximately 30% of the NGS reads were mapped to the genome of Glycyrrhiza uralensis, which is plant material of Glycyrrhizae Radix. Further analysis of the other 70% of reads indicated that the RNA contained RNA sequences that could be mapped to various microorganisms. Together, these results propose nucleic acids as a new research field in the bioactive components of herbal medicines.