首页期刊导航|Biomedicine & pharmacotherapy
期刊信息/Journal information
Biomedicine & pharmacotherapy
Masson Pub. USA, Inc.
Biomedicine & pharmacotherapy

Masson Pub. USA, Inc.

0753-3322

Biomedicine & pharmacotherapy/Journal Biomedicine & pharmacotherapySCIISTP
正式出版
收录年代

    Non-coding RNAs-EZH2 regulatory mechanisms in cervical cancer: The current state of knowledge

    Jianhong ZhengLinlin Chen
    1页
    查看更多>>摘要:Cervical cancer (CC) is among the leading causes of death in women worldwide. Both genetic and epigenetic regulators are required for the tumorigenesis and progression of CC. Non-coding RNAs (ncRNAs) are a group of RNAs that don't code for proteins yet constitute a large part of the human transcriptome, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNA), and other forms of non-coding RNAs. Deregulation of lncRNA, miRNA, and circRNA is implicated in the oncogenesis and development of cervical malignancies, acting as oncogenic drivers or tumor suppressors. Enhancer of zeste homolog 2 (EZH2) is the enzymatic subunit of Polycomb Repressive Complex 2 (PRC2), which functions to methylate histone H3 lysine 27 to silence gene transcription. Converging lines of evidence have revealed the oncogenic role played by EZH2 in cancers. EZH2 is upregulated in CC tissues with a robust correlation to the advanced stage, metastasis, and poor survival rate in patients. The elucidation of the roles of EZH2 in cancer has driven the development of therapeutic EZH2 inhibitors, which are approaching phase I or phase I/II clinical trials. Here we review the ncRNA-EZH2 regulatory pathways in CC that unify EZH2 and ncRNAs as an integrated system in the development of CC. Given the emerging findings for the role of the ncRNA-EZH2 regulatory axis in CC, it will be of great interest to develop novel therapeutic strategies based on their relationship.

    Moxibustion may delay the aging process of Wistar rats by regulating intestinal microbiota

    Xiali OuyangHaoru DuanQi JinXue Luo...
    1页
    查看更多>>摘要:As one of the important treatments of health care and anti-aging in traditional Chinese medicine (TCM), moxibustion has been proved to have the effects of scavenging free radicals, anti-oxidation, reducing inflammatory reaction, regulating immunity and so on. Recent studies have shown that intestinal microbiota affect the process of aging. The relationship between aging, moxibustion and intestinal microbiota is still unclear. In this study, we explored the effects of moxibustion at Guanyuan (RN4) acupoint on intestinal microbiota, short-chain fatty acids and immunological characteristics of young and elder female Wistar rats to explore the relationship between aging, moxibustion and intestinal microbiota. Six 12-week-old female Wistar rats were young group (Y), and twelve 36-week-old female Wistar rats were randomly divided into elder group (C) and moxibustion group (M). The rats in M group were received mild moxibustion at Guanyuan (RN4) acupoint, 20 min/d for 40 days. The rats in Y group and C group were not given any therapeutic intervention. The results showed that moxibustion increased the abundance of intestinal probiotics (mainly Lactobacillus) and the level of short chain fatty acids, the microcirculation blood flow around Guanyuan (RN4) acupoint was also significantly improved in elder rats. In addition, the expression of MyD88, MAPK, TRAF6, NF-κB in intestinal tissue was down-regulated, and the levels of inflammatory cytokines in intestinal were decreased.

    Protective role of nutraceuticals against myocarditis

    Ayesheh EnayatiMaciej BanachTannaz JamialahmadiAmirhossein Sahebkar...
    1页
    查看更多>>摘要:Myocarditis is an inflammatory disease of the myocardium that mostly affects young adults. The disease is commonly caused by viral infection, medications, autoimmune disorders, and inflammatory conditions. Nearly 50% of the cases of myocarditis are due to post-viral immune response in a setting of an identifiable or non-identifiable infection. The clinical manifestation is nonspecific ranging from asymptomatic courses to sudden death in infants and young patients. This review describes the properties of phytochemicals as plant-derived active ingredients which can be used in the prevention and treatment of myocarditis and its associated risk factors. Meanwhile, it has illustrated epidemiological analyses, mechanism of action, and the metabolism of phytochemicals in animal and human clinical trials. We also mentioned the precise mechanism of action by which phytochemicals elicit their anti-viral, anti-inflammatory, antioxidant, and immunomodulatory effects and how they regulate signal transduction pathways. Nevertheless, comprehensive clinical trials are required to study the properties of phytochemicals in vivo, in vitro, and in silico for a proper management of myocarditis. Our findings indicate that phytochemicals function as potent adjunctive therapeutic drugs in myocarditis and its related complications.

    Polymer-hybrid nanosystems for antiviral applications: Current advances

    Daniel Cristian Ferreira SoaresFerna PolettoMarcelo J. EberhardtStephanie Calazans Domingues...
    1页
    查看更多>>摘要:The emergence of many new viruses in recent times has resulted in a significant scientific challenge for discovering drugs and vaccines that effectively treat and prevent viral diseases. Nanotechnology has opened doors to prevent the spread of several diseases, including those caused by viruses. Polymer-hybrid nanodevices are a class of nano technology platforms for biomedical applications that present synergistic properties among their components, with improved performance compared to conventional forms of therapy. Considering the growing interest in this emerging field and the promising technological advantages of polymer-hybrid nanodevices, this work presents the current status of these systems in the context of prevention and treatment of viral diseases. A brief description of the different types of polymer-hybrid nanodevices highlighting some peculiar characteristics such as their composition, biodistribution, delivery of antigens, and overall immune responses in systemic tissues are discussed. Finally, the work presents the future trends for new nanotechnological hybrid materials based on polymers and perspectives for clinical use.

    Molecular mechanisms of thyroid cancer: A competing endogenous RNA (ceRNA) point of view

    Yang LiuSuliman KhanLin LiTimo L.M. ten Hagen...
    1页
    查看更多>>摘要:Thyroid cancer (TC) is the most prevalent malignancy of the endocrine system. Although there are few treatment choices for individuals with TC, determining the underlying mechanisms is essential for treatment due to the complex carcinogenesis of this disease. Recent pieces of evidence suggest that non-coding RNAs (ncRNAs) play an important role in the progression of TC. Nevertheless, the role and function of the complex regulatory interactions between multiple types of ncRNAs in the growth of this malignancy remains unknown. Competing endogenous RNA (ceRNA) is a recently found mechanism that suggests regulatory interactions between various RNAs. It has been proposed that some ncRNAs, such as long noncoding RNAs (lncRNAs), pseudogenes and circular RNAs (circRNAs), can share microRNA (miRNA) response elements, which may influence miRNA interaction with target RNAs and by doing so modulate gene expression at the transcriptional level. According to the analysis of relevant literature, numerous ceRNA networks are deregulated during TC development, metastasis, migration, invasion, epithelial-mesenchymal transition (EMT), and drug resistance. As a result, learning more about these deregulations could lead to earlier diagnosis of TC patients and the discovery of effective therapeutic targets. In this review we outline the current body of information regarding the essential roles of ceRNA networks and highlight the emerging roles of some newfound ceRNA members in different TC hallmarks.

    A retrospective analysis of the "Neverending Trip" after administration of a potent full agonist of 5-HT2A receptor - 25I-NBOMe

    Daria SchetzAdriana SchetzIvan Kocic
    1页
    查看更多>>摘要:Background: 5-HT2A receptor (e.g. 25I-NBOMe) agonists not only pose risks of acute intoxication but also long-term effects and significant adverse reactions, e.g. hallucinogen persisting perception disorder (HPPD), dereal-ization, and depersonalization. Aims: We evaluated the risk associated with single and repeated use of 25I-NBOMe. We aimed to identify factors that may increase the risk of HPPD, increase its severity and determine the time when the first symptoms appear. Herein, we report the first extensive evaluation of 25I-NBOMe-induced HPPD. Method: We assessed all reports (58) collected by The Pomeranian Pharmacovigilance Centre (PPC) from 2013 to 2020. Results: The study included a total of 58 reports of adverse reactions caused by 25I-NBOMe. In the case of 15 reports (in patients aged 19-26 years), symptoms persisted many months after the discontinuation of 25I-NBOMe. The most common were: pseudohallucinations, bizarre delusions, derealizations and in some cases development or worsening of depression has been diagnosed. HPPD-like symptoms were most common in patients who took the drug regularly (i.e., several times a month). The risk of HPPD-like symptoms is higher in patients who have severe visual pseudohallucinations, severe bizarre delusions, derealization and/or depersonalization onset immediately after taking the drug. Recurrence of HPPD symptoms may be provoked by many factors, however, there is some cases there is no apparent reason. HPPD after 25I-NBOMe use can last from 2 months up to 2 years. In some patients, pharmacological treatment was necessary due to 25I-NBOMe-induced HPPD and depression. Conclusions: The study showed long-lasting effects after 25I-NBOMe administration and allowed for the determination of HPPD risk factors.

    Effect of Hibiscus syriacus Linnaeus extract and its active constituent, saponarin, in animal models of stress-induced sleep disturbances and pentobarbital-induced sleep

    Yu Ri KimSun Young LeeSo Min LeeInsop Shim...
    1页
    查看更多>>摘要:Treatment of sleep disorders promotes the long-term use of commercially available sleep inducers that have several adverse effects, including addiction, systemic fatigue, weakness, loss of concentration, headache, and digestive problems. Therefore, we aimed to limit these adverse effects by investigating a natural product, the extract of the Hibiscus syriacus Linnaeus flower (HSF), as an alternative treatment. In the electric footshock model, we measured anxiety and assessed the degree of sleep improvement after administering HSF extract. In the restraint model, we studied the sleep rate using PiezoSleep, a noninvasive assessment system. In the pentobarbital model, we measured sleep improvement and changes in sleep-related factors. Our first model confirmed the desirable effects of HSF extract and its active constituent, saponarin, on anxiolysis and Wake times. HSF extract also increased REM sleep time. Furthermore, HSF extract and saponarin increased the expression of cortical GABA_A receptor α1 (GABAAR α1) and c-Fos in the ventrolateral preoptic nucleus (VLPO). In the second model, HSF extract and saponarin restored the sleep rate and the sleep bout duration. In the third model, HSF extract and saponarin increased sleep maintenance time. Moreover, HSF extract and saponarin increased cortical cholecystokinin (CCK) mRNA levels and the expression of VLPO c-Fos. HSF extract also increased GABAAR α1 mRNA level. Our results suggest that HSF extract and saponarin are effective in maintaining sleep and may be used as a novel treatment for sleep disorder. Eventually, we hope to introduce HSF and saponarin as a clinical treatment for sleep disorders in humans.

    KR-31831 improves survival and protects hematopoietic cells and radiosensitive tissues against radiation-induced injuries in mice

    Ho Won SeoKwang-Seok OhByung Ho LeeJeong Hyun Lee...
    1页
    查看更多>>摘要:This study explored the radio protective effects and possible underlying mechanisms of KR-31831 against radiation-induced injury in a mouse model. KR-31831 (30 and 50 mg/kg) was administered to mice 24 h and 30 min before exposure to a single lethal or sublethal dose of whole-body irradiation (WBI) (7 or 4 Gy, respectively). These animals were then evaluated for changes in mortality, various hematological and biochemical parameters, and histological features in response to these treatments. In addition, RNA sequencing was used to profile the radiation-induced transcriptomic response in the bone marrow cells. The results showed that KR-31831 dose-dependently prolonged the 30-day survival period and prevented damage to radiation-sensitive organs, such as the intestine and testis, in response to WBI. Damage to the hematopoietic system was also notably improved in the KR-31831-treated mice, as evidenced by an increase in bone marrow and peripheral blood cells, as well as recovery of the histopathological characteristics of the bone marrow. These protective effects were achieved, at least in part, via the suppression of radiation-induced increases in apoptotic cell death and erythropoietin levels in the plasma. Furthermore, the gene expression profiles of the bone marrow cells of the WBI-treated mice suggested that KR-31831 upregulates the expression of the genes involved in regulating apoptosis and modulating the immune response, both of which are required for protecting the bone marrow. These results suggest the potential therapeutic efficacy of KR-31831 for protection against radiation-induced injury.

    CYP450 drug inducibility in NAFLD via an in vitro hepatic model: Understanding drug-drug interactions in the fatty liver

    Camilo Rey-BedonAslihan GokaltunO. HofheinzMartin. L. Yarmush...
    1页
    查看更多>>摘要:Drug-drug-interactions (DDIs) occur when a drug alters the metabolic rate, efficacy, and toxicity of concurrently used drugs. While almost 1 in 4 adults now use at least 3 concurrent prescription drugs in the United States, the Non-alcoholic fatty liver disease (NAFLD) prevalence has also risen over 25%. The effect of NALFD on DDIs is largely unknown. NAFLD is characterized by lipid vesicle accumulation in the liver, which can progress to severe steatohepatitis (NASH), fibrosis, cirrhosis, and hepatic carcinoma. The CYP450 enzyme family dysregulation in NAFLD, which might already alter the efficacy and toxicity of drugs, has been partially characterized. Nevertheless, the drug-induced dysregulation of CYP450 enzymes has not been studied in the fatty liver. These changes in enzymatic inducibility during NAFLD, when taking concurrent drugs, could cause unexpected fatalities through inadvertent DDIs. We have, thus, developed an in vitro model to investigate the CYP450 transcriptional regulation in NAFLD. Specifically, we cultured primary human hepatocytes in a medium containing free fatty acids, high glucose, and insulin for seven days. These cultures displayed intracellular macro-steatosis after 5 days and cytokine secretion resembling NAFLD patients. We further verified the model's dysregulation in the transcription of key CYP450 enzymes. We then exposed the NAFLD model to the drug inducers rifampicin, Omep-razole, and Phenytoin as activators of transcription factors pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR) and constitutive androstane receptor (CAR), respectively. In the NAFLD model, Omeprazole maintained an expected induction of CYP1A1, however Phenytoin and Rifampicin showed elevated induction of CYP2B6 and CYP2C9 compared to healthy cultures. We, thus, conclude that the fatty liver could cause aggravated drug-drug interactions in NAFLD or NASH patients related to CYP2B6 and CYP2C9 enzymes.

    Novel anti-aging herbal formulation Jing Si displays pleiotropic effects against aging associated disorders

    Martham Asokan ShibuYu-Jung LinChien-Yi ChiangCheng-You Lu...
    1页
    查看更多>>摘要:Common characteristics of aging include reduced somatic stem cell number, susceptibility to cardiac injuries, metabolic imbalances and increased risk for oncogenesis. In this study, Pleiotropic anti-aging effects of a decoction Jing Si herbal drink (JS) containing eight Traditional Chinese Medicine based herbs, with known effects against aging related disorders was evaluated. Adipose derived mesenchymal stem cells (ADMSCs) from 16 week old adult and 24 month old aging WKY rats were evaluated for the age-related changes in stem cell homeostasis. Effects of JS on self-renewal, klotho and Telomerase Reverse Transcriptase expression DNA damage response were determined by immunofluorescence staining. The effects were confirmed in senescence induced human ADMSCs and in addition, the potential of JS to maintain telomere length was evaluated by qPCR analysis in ADMSCs challenged for long term with doxorubicin. Further, the effects of JS on doxorubicin-induced hy-pertrophic effect and DNA damage in H9c2 cardiac cells; MPP+-induced damages in SH-SY5Y neuron cells were investigated. In addition, effects of JS in maintaining metabolic regulation, in terms of blood glucose regulation in type-II diabetes mice model, and their potential to suppress malignancy in different cancer cells were ascertained. The results show that JS maintains stem cell homeostasis and provides cytoprotection. In addition JS regulates blood glucose metabolism, enhances autophagic clearances in neurons and suppresses cancer growth and migration. The results show that JS acts on multiple targets and provides a cumulative protective effect against various age-associated disorders and therefore it is a candidate pleiotropic agent for healthy aging.