首页期刊导航|Cancer letters
期刊信息/Journal information
Cancer letters
Elsevier
Cancer letters

Elsevier

0304-3835

Cancer letters/Journal Cancer lettersSCIISTP
正式出版
收录年代

    Remodeling metabolic fitness: Strategies for improving the efficacy of chimeric antigen receptor T cell therapy

    Shen L.Xiao Y.Tian J.Lu Z....
    14页
    查看更多>>摘要:? 2022The dramatic success of adoptive transfer of engineered T cells expressing chimeric antigen receptor (CAR-T) has been achieved with effective responses in some relapsed or refractory hematologic malignancies, which is not yet met in solid tumors. The efficacy of CAR-T therapy is associated with its fate determination and their interaction with cancer cells in tumor microenvironment (TME), which is closely correlated with T cell metabolism fitness. Indeed, modulating T cell metabolism reprogramming has been proven crucial for their survival and reinvigorating antitumor immunity, and thus is considered as a promising strategy to improve the clinical performance of CAR-T cell therapy in difficult-to-treat cancers. This review briefly summarizes the T cell metabolic profiles and key metabolic challenges it faces in TME such as nutrient depletion, hypoxia, and toxic metabolites, then emphatically discusses the potential strategies to modulate metabolic properties of CAR-T cells including improving CARs construct design, optimizing manufacture process via addition of exogenous cytokines or targeting specific signaling pathway, manipulating ROS levels balance or relieving the unfavorable metabolic TME including adaptation to hypoxia and blocking inhibitory effect of toxic metabolites, eventually strengthening the anti-tumor response.

    Inhibition of the endosomal recycling pathway downregulates HER2 activation and overcomes resistance to tyrosine kinase inhibitors in HER2-positive breast cancer

    Mishra A.Hourigan D.Lindsay A.J.
    15页
    查看更多>>摘要:? 2022 The AuthorsThe development of HER2-targeted therapies has led to a dramatic improvement in outcomes for breast cancer patients. However, nearly all patients with metastatic HER2-positive breast cancer will eventually progress on these therapies due to innate or acquired resistance. Recent evidence suggests that the endosomal recycling of HER2 plays an important role in regulating its oncogenic signalling. Here we report that the expression of Rab coupling protein (RCP), a key regulator of endosomal recycling, positively correlates with that of HER2 and HER3 in breast tumours, and high RCP expression is predictive of poor relapse-free and overall survival in patients with HER2-amplified breast cancer. Chemical and genetic inhibition of endosomal recycling leads to a reduction in the total cellular levels of HER2 and HER3 and inhibits the activation of their downstream signalling pathways. We find that HER2 and HER3 that have been internalised from the plasma membrane are diverted to lysosomes for degradation when endosomal recycling is blocked. Primaquine (PQ), a small molecule inhibitor of the endosomal recycling pathway, synergises with HER2-targeting tyrosine kinase inhibitors and overcomes innate and acquired resistance to these TKIs. Moreover, TKI-induced drug tolerant persister cells are vulnerable to endosomal recycling inhibitors. These findings suggest that inhibition of endosomal recycling represents a promising therapeutic strategy for treating drug resistant HER2-positive breast cancer.

    Tumor cell-derived exosomes deliver TIE2 protein to macrophages to promote angiogenesis in cervical cancer

    Du S.Qian J.Tan S.Li W....
    12页
    查看更多>>摘要:? 2022 The AuthorsTyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (TIE2)-expressing macrophages (TEMs) are an angiogenesis-promoting subset of tumor-associated macrophages that have been demonstrated to be increased in solid tumors and associated with the progression of cervical cancer. However, the induction mechanism of TEMs remains unclear. Here, based on multicolor immunofluorescence of 58 cervical cancer tissues and the GEPIA database, we found that TEMs were increased in TIE2-high cervical cancer and related to shorter survival. In vitro and in vivo experiments verified that exosomes derived from TIE2-high cervical cancer cells transferred TIE2 protein directly to macrophages, thereby inducing TEMs. Similar to primary TEMs, TEMs induced by tumor-derived exosomes promoted angiogenesis, could be induced by angiopoietin-2, and possessed an M2-like phenotype. In conclusion, exosomes derived from TIE2-high cervical cancer cells induce TEMs by directly transporting TIE2 to promote tumor angiogenesis.