首页期刊导航|Neural Networks
期刊信息/Journal information
Neural Networks
Pergamon Press
Neural Networks

Pergamon Press

0893-6080

Neural Networks/Journal Neural NetworksSCIAHCIEIISTP
正式出版
收录年代

    New effective approach to quasi synchronization of coupled heterogeneous complex networks

    Chen T.
    5页
    查看更多>>摘要:? 2021 Elsevier LtdThis short paper addresses quasi synchronization of linearly coupled heterogeneous systems. Similarity and difference between the complete synchronization of linearly coupled homogeneous systems and the quasi synchronization of linearly coupled heterogeneous systems will be revealed.

    Zenithal isotropic object counting by localization using adversarial training

    Rodriguez-Vazquez J.Alvarez-Fernandez A.Molina M.Campoy P....
    9页
    查看更多>>摘要:? 2021 Elsevier LtdCounting objects in images is a very time-consuming task for humans that yields to errors caused by repetitiveness and boredom. In this paper, we present a novel object counting method that, unlike most of the recent works that focus on the regression of a density map, performs the counting procedure by localizing each single object. This key difference allows us to provide not only an accurate count but the position of every counted object, information that can be critical in some areas such as precision agriculture. The method is designed in two steps: first, a CNN is in charge of mapping arbitrary objects to blob-like structures. Then, using a Laplacian of Gaussian (LoG) filter, we are able to gather the position of all detected objects. We also propose a semi-adversarial training procedure that, combined with the former design, improves the result by a large margin. After evaluating the method on two public benchmarks of isometric objects, we stay on par with the state of the art while being able to provide extra position information.

    Epistemic uncertainty quantification in deep learning classification by the Delta method

    Nilsen G.K.Munthe-Kaas A.Z.Skaug H.J.Brun M....
    13页
    查看更多>>摘要:? 2021 The Author(s)The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters P. We propose a low cost approximation of the Delta method applicable to L2-regularized deep neural networks based on the top K eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of the exact inverse Hessian, the inverse outer-products of gradients approximation and the so-called Sandwich estimator. Moreover, we provide bounds on the approximation error for the uncertainty of the predictive class probabilities. We show that when the smallest computed eigenvalue of the Fisher information matrix is near the L2-regularization rate, the approximation error will be close to zero even when K?P. A demonstration of the methodology is presented using a TensorFlow implementation, and we show that meaningful rankings of images based on predictive uncertainty can be obtained for two LeNet and ResNet-based neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have on average a higher predictive epistemic uncertainty than true positives. This suggests that there is supplementing information in the uncertainty measure not captured by the classification alone.

    Exponential synchronization of coupled neural networks under stochastic deception attacks

    Zhang H.Li L.Li X.
    10页
    查看更多>>摘要:? 2021 Elsevier LtdIn this paper, the issue of synchronization is investigated for coupled neural networks subject to stochastic deception attacks. Firstly, a general differential inequality with delayed impulses is given. Then, the established differential inequality is further extended to the case of delayed stochastic impulses, in which both the impulsive instants and impulsive intensity are stochastic. Secondly, by modeling the stochastic discrete-time deception attacks as stochastic impulses, synchronization criteria of the coupled neural networks under the corresponding attacks are given. Finally, two numerical examples are provided to demonstrate the correctness of the theoretical results.

    Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation

    Ran X.Xu M.Mei L.Xu Q....
    10页
    查看更多>>摘要:? 2021 Elsevier LtdVariational autoencoders (VAEs) are influential generative models with rich representation capabilities from the deep neural network architecture and Bayesian method. However, VAE models have a weakness that assign a higher likelihood to out-of-distribution (OOD) inputs than in-distribution (ID) inputs. To address this problem, a reliable uncertainty estimation is considered to be critical for in-depth understanding of OOD inputs. In this study, we propose an improved noise contrastive prior (INCP) to be able to integrate into the encoder of VAEs, called INCPVAE. INCP is scalable, trainable and compatible with VAEs, and it also adopts the merits from the INCP for uncertainty estimation. Experiments on various datasets demonstrate that compared to the standard VAEs, our model is superior in uncertainty estimation for the OOD data and is robust in anomaly detection tasks. The INCPVAE model obtains reliable uncertainty estimation for OOD inputs and solves the OOD problem in VAE models.

    GuidedStyle: Attribute knowledge guided style manipulation for semantic face editing

    Hou X.Zhang X.Liang H.Shen L....
    12页
    查看更多>>摘要:? 2021 Elsevier LtdAlthough significant progress has been made in synthesizing high-quality and visually realistic face images by unconditional Generative Adversarial Networks (GANs), there is still a lack of control over the generation process in order to achieve semantic face editing. In this paper, we propose a novel learning framework, called GuidedStyle, to achieve semantic face editing on pretrained StyleGAN by guiding the image generation process with a knowledge network. Furthermore, we allow an attention mechanism in StyleGAN generator to adaptively select a single layer for style manipulation. As a result, our method is able to perform disentangled and controllable edits along various attributes, including smiling, eyeglasses, gender, mustache, hair color and attractive. Both qualitative and quantitative results demonstrate the superiority of our method over other competing methods for semantic face editing. Moreover, we show that our model can be also applied to different types of real and artistic face editing, demonstrating strong generalization ability.

    Sparsity-control ternary weight networks

    Deng X.Zhang Z.
    12页
    查看更多>>摘要:? 2021 Elsevier LtdDeep neural networks (DNNs) have been widely and successfully applied to various applications, but they require large amounts of memory and computational power. This severely restricts their deployment on resource-limited devices. To address this issue, many efforts have been made on training low-bit weight DNNs. In this paper, we focus on training ternary weight {?1, 0, +1} networks which can avoid multiplications and dramatically reduce the memory and computation requirements. A ternary weight network can be considered as a sparser version of the binary weight counterpart by replacing some ?1s or 1s in the binary weights with 0s, thus leading to more efficient inference but more memory cost. However, the existing approaches to train ternary weight networks cannot control the sparsity (i.e., percentage of 0s) of the ternary weights, which undermines the advantage of ternary weights. In this paper, we propose to our best knowledge the first sparsity-control approach (SCA) to train ternary weight networks, which is simply achieved by a weight discretization regularizer (WDR). SCA is different from all the existing regularizer-based approaches in that it can control the sparsity of the ternary weights through a controller α and does not rely on gradient estimators. We theoretically and empirically show that the sparsity of the trained ternary weights is positively related to α. SCA is extremely simple, easy-to-implement, and is shown to consistently outperform the state-of-the-art approaches significantly over several benchmark datasets and even matches the performances of the full-precision weight counterparts.

    Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction

    Ali A.Zhu Y.Zakarya M.
    15页
    查看更多>>摘要:? 2021 Elsevier LtdThe prediction of crowd flows is an important urban computing issue whose purpose is to predict the future number of incoming and outgoing people in regions. Measuring the complicated spatial–temporal dependencies with external factors, such as weather conditions and surrounding point-of-interest (POI) distribution is the most difficult aspect of predicting crowd flows movement. To overcome the above issue, this paper advises a unified dynamic deep spatio-temporal neural network model based on convolutional neural networks and long short-term memory, termed as (DHSTNet) to simultaneously predict crowd flows in every region of a city. The DHSTNet model is made up of four separate components: a recent, daily, weekly, and an external branch component. Our proposed approach simultaneously assigns various weights to different branches and integrates the four properties’ outputs to generate final predictions. Moreover, to verify the generalization and scalability of the proposed model, we apply a Graph Convolutional Network (GCN) based on Long Short Term Memory (LSTM) with the previously published model, termed as GCN-DHSTNet; to capture the spatial patterns and short-term temporal features; and to illustrate its exceptional accomplishment in predicting the traffic crowd flows. The GCN-DHSTNet model not only depicts the spatio-temporal dependencies but also reveals the influence of different time granularity, which are recent, daily, weekly periodicity and external properties, respectively. Finally, a fully connected neural network is utilized to fuse the spatio-temporal features and external properties together. Using two different real-world traffic datasets, our evaluation suggests that the proposed GCN-DHSTNet method is approximately 7.9%–27.2% and 11.2%–11.9% better than the AAtt-DHSTNet method in terms of RMSE and MAPE metrics, respectively. Furthermore, AAtt-DHSTNet outperforms other state-of-the-art methods.

    FCL-Net: Towards accurate edge detection via Fine-scale Corrective Learning

    Xuan W.Huang S.Liu J.Du B....
    12页
    查看更多>>摘要:? 2021 Elsevier LtdIntegrating multi-scale predictions has become a mainstream paradigm in edge detection. However, most existing methods mainly focus on effective feature extraction and multi-scale feature fusion while ignoring the low learning capacity in fine-level branches, limiting the overall fusion performance. In light of this, we propose a novel Fine-scale Corrective Learning Net (FCL-Net) that exploits semantic information from deep layers to facilitate fine-scale feature learning. FCL-Net mainly consists of a Top-down Attentional Guiding (TAG) and a Pixel-level Weighting (PW) module. TAG module adopts semantic attentional cues from coarse-scale prediction into guiding the fine-scale branches by learning a top-down LSTM. PW module treats the contribution of each spatial location independently and promote fine-level branches to detect detailed edges with high confidence. Experiments on three benchmark datasets, i.e., BSDS500, Multicue, and BIPED, show that our approach significantly outperforms the baseline and achieves a competitive ODS F-measure of 0.826 on the BSDS500 benchmark. The source code and models are publicly available at https://github.com/DREAMXFAR/FCL-Net.

    Reinforcement learning and its connections with neuroscience and psychology

    Subramanian A.Chitlangia S.Baths V.
    17页
    查看更多>>摘要:? 2021 Elsevier LtdReinforcement learning methods have recently been very successful at performing complex sequential tasks like playing Atari games, Go and Poker. These algorithms have outperformed humans in several tasks by learning from scratch, using only scalar rewards obtained through interaction with their environment. While there certainly has been considerable independent innovation to produce such results, many core ideas in reinforcement learning are inspired by phenomena in animal learning, psychology and neuroscience. In this paper, we comprehensively review a large number of findings in both neuroscience and psychology that evidence reinforcement learning as a promising candidate for modeling learning and decision making in the brain. In doing so, we construct a mapping between various classes of modern RL algorithms and specific findings in both neurophysiological and behavioral literature. We then discuss the implications of this observed relationship between RL, neuroscience and psychology and its role in advancing research in both AI and brain science.