首页期刊导航|European journal of human genetics
期刊信息/Journal information
European journal of human genetics
Stockton Press
European journal of human genetics

Stockton Press

1018-4813

European journal of human genetics/Journal European journal of human geneticsSSCISCIISTPAHCI
正式出版
收录年代

    Exome sequencing-one test to rule them all?

    McNeill, Alisdair
    1页

    COVID-19: a challenge and an opportunity

    Renieri, Alessandra
    2页

    Leave no one behind: inclusion of alpha-1 antitrypsin deficiency patients in COVID-19 vaccine trials

    Yang, ChengliangZhao, HediTebbutt, Scott J.
    3页
    查看更多>>摘要:The coronavirus disease of 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, continues to present an unprecedented challenge worldwide. Emerging evidence suggests that alpha-1 antitrypsin (A1AT), a circulating protein with protective effects on the lung and other vital organs, plays a critical role in preventing SARS-CoV-2 infection and may be a promising therapeutic option for patients with COVID-19. A1AT deficiency (AATD) is characterized by dysfunctional or insufficient levels of A1AT. Recently, we have proposed that AATD patients are a vulnerable population for COVID-19. Patients with AATD may derive limited benefit from the current COVID-19 vaccines and continue to rely on conventional medical therapy and behavioral adaptations to mitigate the risk of infection. Unfortunately, this population has not been included in the COVID-19 vaccine clinical trials and studies have yet to characterize the safety, immunogenicity, and ultimately, the efficacy of COVID-19 vaccines for AATD patients. Re-evaluation of the COVID-19 vaccine safety and immunogenicity will further promote informed decision-making for vaccination in AATD individuals and contribute to reduce morbidity and mortality from COVID-19 infection.

    Exploring the ethics of genetic prioritisation for COVID-19 vaccines

    Bruce, JagoJohnson, Stephanie B.
    5页
    查看更多>>摘要:There is evidence to suggest that host genomic factors may account for disease response variability in COVID-19 infection. In this paper, we consider if and how host genomics should influence decisions about vaccine allocation. Three potential host genetic factors are explored: vulnerability to infection, resistance to infection, and increased infectivity. We argue for the prioritisation of the genetically vulnerable in vaccination schemes, and evaluate the potential for ethical de-prioritisation of individuals with genetic markers for resistance. Lastly, we discuss ethical prioritisation of individuals with genetic markers for increased infectivity (those more likely to spread COVID-19).

    Coronavirus Host Genetics South Africa (COHG-SA) database-a variant database for gene regions associated with SARS-CoV-2 outcomes

    Barmania, FatimaMellet, JuanitaRyder, Megan A.Ford, Graeme...
    9页
    查看更多>>摘要:The SARS-CoV-2 virus is responsible for the COVID-19 global public health emergency, and the disease it causes is highly variable in its clinical presentation. Clinical phenotypes are heterogeneous both in terms of presentation of symptoms in the host and response to therapy. Several studies and initiatives have been established to analyse and review host genetic epidemiology associated with COVID-19. Our research group curated these articles into a web-based database using the python application-server framework Django. The database provides a searchable research tool describing current literature surrounding COVID-19 host genetic factors associated with disease outcome. This paper describes the COHG-SA database and provides an overview of the analyses that can be derived from these data.

    A comprehensive SARS-CoV-2 and COVID-19 review, Part 1: Intracellular overdrive for SARS-CoV-2 infection

    Jamison, David A.Narayanan, S. AnandTrovao, Nidia S.Guarnieri, Joseph W....
    10页
    查看更多>>摘要:COVID-19, the disease caused by SARS-CoV-2, has claimed approximately 5 million lives and 257 million cases reported globally. This virus and disease have significantly affected people worldwide, whether directly and/or indirectly, with a virulent pathogen that continues to evolve as we race to learn how to prevent, control, or cure COVID-19. The focus of this review is on the SARS-CoV-2 virus' mechanism of infection and its proclivity at adapting and restructuring the intracellular environment to support viral replication. We highlight current knowledge and how scientific communities with expertize in viral, cellular, and clinical biology have contributed to increase our understanding of SARS-CoV-2, and how these findings may help explain the widely varied clinical observations of COVID-19 patients.

    Host genetic basis of COVID-19: from methodologies to genes

    Zguro, KristinaFallerini, ChiaraFava, FrancescaFurini, Simone...
    9页
    查看更多>>摘要:The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is having a massive impact on public health, societies, and economies worldwide. Despite the ongoing vaccination program, treating COVID-19 remains a high priority; thus, a better understanding of the disease is urgently needed. Initially, susceptibility was associated with age, sex, and other prior existing comorbidities. However, as these conditions alone could not explain the highly variable clinical manifestations of SARS-CoV-2 infection, the attention was shifted toward the identification of the genetic basis of COVID-19. Thanks to international collaborations like The COVID-19 Host Genetics Initiative, it became possible the elucidation of numerous genetic markers that are not only likely to help in explaining the varied clinical outcomes of COVID-19 patients but can also guide the development of novel diagnostics and therapeutics. Within this framework, this review delineates GWAS and Burden test as traditional methodologies employed so far for the discovery of the human genetic basis of COVID-19, with particular attention to recently emerged predictive models such as the post-Mendelian model. A summary table with the main genome-wide significant genomic loci is provided. Besides, various common and rare variants identified in genes like TLR7, CFTR, ACE2, TMPRSS2, TLR3, and SELP are further described in detail to illustrate their association with disease severity.

    Host genomics of SARS-CoV-2 infection

    Redin, ClaireThorball, Christian W.Fellay, Jacques
    7页
    查看更多>>摘要:SARS-CoV-2 infected a large fraction of humans in the past 2 years. The clinical presentation of acute infection varies greatly between individuals, ranging from asymptomatic or mild to life-threatening COVID-19 pneumonia with multi-organ complications. Demographic and comorbid factors explain part of this variability, yet it became clear early in the pandemic that human genetic variation also plays a role in the stark differences observed amongst SARS-CoV-2 infected individuals. Using tools and approaches successfully developed for human genomic studies in the previous decade, large international collaborations embarked in the exploration of the genetic determinants of multiple outcomes of SARS-CoV-2 infection, with a special emphasis on disease severity. Genome-wide association studies identified multiple common genetic variants associated with COVID-19 pneumonia, most of which in regions encoding genes with known or suspected immune function. However, the downstream, functional work required to understand the precise causal variants at each locus has only begun. The interrogation of rare genetic variants using targeted, exome, or genome sequencing approaches has shown that defects in genes involved in type I interferon response explain some of the most severe cases. By highlighting genes and pathways involved in SARS-CoV-2 pathogenesis and host-virus interactions, human genomic studies not only revealed novel preventive and therapeutic targets, but also paved the way for more individualized disease management.

    The genetic and evolutionary determinants of COVID-19 susceptibility

    Kerner, GaspardQuintana-Murci, Lluis
    7页
    查看更多>>摘要:Devastating pandemics, such as that due to COVID-19, can provide strong testimony to our knowledge of the genetic and evolutionary determinants of infectious disease susceptibility and severity. One of the most remarkable aspects of such outbreaks is the stunning interindividual variability observed in the course of infection. In recent decades, enormous progress has been made in the field of the human genetics of infectious diseases, and an increasing number of human genetic factors have been reported to explain, to a great extent, the observed variability for a large number of infectious agents. However, our understanding of the cellular, molecular, and immunological mechanisms underlying such disparities between individuals and ethnic groups, remains very limited. Here, we discuss recent findings relating to human genetic predisposition to infectious disease, from an immunological or population genetic perspective, and show how these and other innovative approaches have been applied to deciphering the genetic basis of human susceptibility to COVID-19 and the severity of this disease. From an evolutionary perspective, we show how past demographic and selection events characterizing the history of our species, including admixture with archaic humans, such as Neanderthals, facilitated modern human adaptation to the threats imposed by ancient pathogens. In the context of emerging infectious diseases, these past episodes of genetic adaptation may contribute to some of the observed population differences in the outcome of SARS-CoV-2 infection and the severity of COVID-19 illness.

    Allelic imbalance of HLA-B expression in human lung cells infected with coronavirus and other respiratory viruses

    Zhang, YuanxuSun, YishengZhu, HanpingHong, Hai...
    8页
    查看更多>>摘要:The human leucocyte antigen (HLA) loci have been widely characterized to be associated with viral infectious diseases using either HLA allele frequency-based association or in silico predicted studies. However, there is less experimental evidence to link the HLA alleles with COVID-19 and other respiratory infectious diseases, particularly in the lung cells. To examine the role of HLA alleles in response to coronavirus and other respiratory viral infections in disease-relevant cells, we designed a two-stage study by integrating publicly accessible RNA-seq data sets, and performed allelic expression (AE) analysis on heterozygous HLA genotypes. We discovered an increased AE pattern accompanied with overexpression of HLA-B gene in SARS-CoV-2-infected human lung epithelial cells. Analysis of independent data sets verified the respiratory virus-induced AE of HLA-B gene in lung cells and tissues. The results were further experimentally validated in cultured lung cells infected with SARS-CoV-2. We further uncovered that the antiviral cytokine IFN beta contribute to AE of the HLA-B gene in lung cells. Our analyses provide a new insight into allelic influence on the HLA expression in association with SARS-CoV-2 and other common viral infectious diseases.