Blakely, Kyle Allen-FrancisWalworth, Matthew J.Zhang, ShawnStroud, Paul A....
11页
查看更多>>摘要:For oral solid dosage forms, disintegration and dissolution properties are closely related to the powders and particles used in their formulation. However, there remains a strong need to characterize the impact of particle structures on tablet compaction and performance. Three-dimensional non-invasive tomographic imaging plays an increasingly essential role in the characterization of drug substances, drug product intermediates, and drug products. It can reveal information hidden at the micro-scale which traditional characterization approaches fail to divulge due to a lack of resolution. In this study, two batches of spray-dried particles (SDP) and two corresponding tablets of an amorphous product, merestinib (LY2801653), were analyzed with 3D X-Ray Microscopy. Artificial intelligence-based image analytics were used to quantify physical properties, which were then correlated with dissolution behavior. The correlation derived from the image-based characterization was validated with conventional laboratory physical property measurements. Quantitative insights obtained from imageanalysis including porosity, pore size distribution, surface area and pore connectivity helped to explain the differences in dissolution behavior between the two tablets, with root causes traceable to the microstructure differences in their corresponding SDPs.
查看更多>>摘要:In the present study, a multi-component system comprised of dipalmitylphospatidylcholine (DPPC), Chitosan, Lactose, and L-Leucine was developed for pulmonary delivery. Microparticles were engineered by the spray drying process and the selection of the critical parameters was performed by applying experimental design. The microcarriers with the appropriate size and yield were co-formulated with two active pharmaceutical ingredients (APIs), namely, Formoterol fumarate and Budesonide, and they were further investigated. All formulations exhibited spherical shape, appropriate aerodynamic performance, satisfying entrapment efficiency, and drug load. Their physicochemical properties were evaluated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC). The aerodynamic particle size characterization was determined using an eight-stage Andersen cascade impactor, whereas the release of the actives was monitored in vitro in simulated lung fluid. Additional evaluation of the microparticles' mucoadhesive properties was performed by zeta-potential measurements and ex vivo mucoadhesion study applying a falling liquid film method using porcine lung tissue. Cytotoxicity and cellular uptake studies in Calu-3 lung epithelial cell line were conducted to further investigate the safety and efficacy of the developed formulations.
查看更多>>摘要:Background: One of the important metabolic pathways in cancer progression is tryptophan catabolism by the indoleamin-2,3-dioxygenase (IDO) enzyme, which suppresses the immune system and induces tolerance. Inhibition of IDO1 is an important therapeutic goal for immunotherapy in many cancers such as metastatic melanoma. Epacadostat (EPA) is a very strong inhibitor of IDO1, and its clinical studies are being performed in a higher clinical phase than other inhibitors. In this study, we have developed a new liposomal EPA formulation to reduce the dose, side effects, and treatment costs. Methods: Liposomes containing EPA were formulated using a novel remote loading method. Their morphology, particle size, surface charge, total phospholipid content, and drug loading were evaluated. Validation method studies to assay of EPA were carried out according to ICHQ2B guidelines. For in-vivo study, B16F10 melanoma bearing C57BL/6 mice were treated with the free or liposomal forms of EPA, and then monitored for tumor size and survival rate. Results: A validated method for EPA determination in liposomal form using UV-visible spectrophotometry was developed which was a precise, accurate and robust method. The particle size, zeta potential, and encapsulation efficacy of liposomes was 128.1 +/- 1.1 nm, -16.5 +/- 1 mV, and 64.9 +/- 3.5, respectively. The half maximal inhibitory concentration (IC50) of liposomal EPA was 64 ng/ml that was lower than free EPA (128 ng/ml). Invivo results also showed that tumor growth was slower in mice receiving liposomal EPA than in the group receiving free EPA. Conclusion: A new method was developed to load EPA into liposomes. Moreover, the use of the nanoliposomal EPA showed more efficacy than EPA in inhibiting the tumor growth in melanoma model. Therefore, it might be used in further clinical studies as a good candidate for immunotherapy alone or in combination with other treatments.
查看更多>>摘要:Purpose: The study aimed to explore the relationship of different exposure measures with 131I therapy response in patients with benign thyroid disease, estimate the variability in the response, investigate possible covariates, and discuss dosing implications of the results. Methods: A population exposure-response analysis was performed using nonlinear mixed-effects modelling. Data from 95 adult patients with benign thyroid disease were analysed. Evaluated exposure parameters were: administered radioactivity dose (Aa) [MBq], total absorbed dose (ABD) [Gy], maximum of absorbed dose-rate (MXR) [Gy/h] and biologically effective dose (BED) [Gy]. The response was modelled as ordered categorical data: hyper-, eu- and hypothyroidism. The final model performance was evaluated by a visual predictive check. Results: The probability of the outcome following 131I therapy was best described by a proportional-odds model, including the log-linear model of 131I effect and the exponential model of the response-time relationship. All exposure measures were statistically significant with p<0.001, with BED and ABD being statistically better than the other two. Nevertheless, as BED resulted in the lowest AIC value, it was included in the final model. Accordingly, BED value of 289.7 Gy is associated with 80% probability of successful treatment outcome 12 months after 131I application in patients with median thyroid volume (32.28 mL). The target thyroid volume was a statistically significant covariate. The visual predictive check of the final model showed good model performance. Conclusion: Our results imply that BED formalism could aid in therapy individualisation. The larger thyroid volume is associated with a lower probability of a successful outcome.
查看更多>>摘要:Objective: Recombinant human albumin (rHA) is an alternative to human serum albumin (HSA) for treating ascites in cirrhosis patients. This study was to evaluate the safety, tolerability, immunogenicity, and pharmacokinetics/pharmacodynamics (PK/PD) of rHA in healthy subjects to guide the design for further clinical trials. Methods: Healthy subjects aged 18-55 years were enrolled in this double-blinded, first-in-human, placebo controlled single ascending dose (SAD) (1.25, 5, 10, 20, or 30g) and positive-controlled multiple-dose study (3-day treatment of 10g/day for three cycles every three weeks). The safety was assessed by adverse events (AEs). Antibodies (IgE and IgD) and cytokines were analyzed for immunogenicity. Serum albumin levels and changes in plasma colloid osmotic pressure (PCOP) and hematocrit (HCT) were measured for PK/PD analysis. Results: rHA was well tolerated as all AEs were assessed as mild or moderate. No severe allergy or difference in the incidence of AEs was observed among the different cohorts in the SAD study or in the different cycles in the multiple-dose study. The incidence of AEs was similar for the rHA and HSA cohort. Antibodies or cytokines showed no changes after drug administration. As expected, serum albumin levels and PCOP increases, and HCT ratio decreases were dose-related with significant differences (p < 0.01). No differences were observed between rHA and HSA. Conclusion: rHA is safe and well-tolerated in healthy Chinese subjects. rHA and HSA exhibited similar safety, tolerability, and PK/PD profiles. The results support further evaluation of rHA treatment in cirrhotic patients with ascites. The clinical trial registration numbers are CTR20191221 (http://www.chinadrugtrials.org.cn/cl inicaltrials.searchlistdetail.dhtml).
查看更多>>摘要:Single-domain antibodies, VHHs or nanobodies, represent a promising set of alternatives to conventional therapeutic antibodies, gaining substantial attention in the field of cancer immunotherapy. However, inherent drawbacks of nanobodies such as fast clearance from blood circulation and lack of immune effector functions often led to unsatisfactory therapeutic efficacy. We previously reported that dinitrophenyl modification of an anti-EGFR VHH conferred Fc-dependent immune effector functions and elongated serum half-life on it through recruiting of hapten antibodies, resulting in improved immunotherapy efficacy in vivo. In the present work, we further tested the versatility of this approach in the case of an anti-PD-L1 blockade VHH (KN035). Site-specific dinitrophenyl conjugation did not impair the binding capacity of KN035 portion to PD-L1, but indirectly restored its immune effector functions, manifested by the observed antibody dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis and complement-dependent cytotoxicity against PD-L1 positive tumor cells. Significant delay of blood clearance of dinitrophenylated KN035 was evidenced by the prolonged half-life of ca. 22 h. This approach, using small hapten molecule conjugation, loaded additional antibody-mediated tumor killing mechanisms to PD-L1 blockade VHH and therefore improved efficacy is anticipated in the future in vivo therapeutic studies. Thus, our results underscore the power of this versatile approach for achieving desirable properties of VHH-based or similar therapeutics.
查看更多>>摘要:Drugs targeting epigenetic mechanisms are attracting the attention of scientists since it was observed that the modulation of this post-translational apparatus, could help to identify innovative therapeutic strategies. Among the epigenetic druggable targets, the positive modulation of SIRT1 has also been related to significant cardioprotective effects. Unfortunately, actual SIRT1 activators (natural products and synthetic molecules) suffer from several drawbacks, particularly poor pharmacokinetic profiles. Accordingly, in this article we present the development of an integrated screening platform aimed at identifying novel SIRT1 activators with favorable drug-like features as cardioprotective agents. Encompassing several competencies (in silico, medicinal chemistry, and pharmacology), we describe a multidisciplinary approach for rapidly identifying SIRT1 activators and their preliminary pharmacological characterization. In the first step, we virtually screened an in-house chemical library comprising synthetic molecules inspired by nature, against SIRT1 enzyme. To this end, we combined molecular docking-based approach with the estimation of relative ligand binding energy, using the crystal structure of SIRT1 enzyme in complex with resveratrol. Eleven computational hits were identified, synthesized and tested against the isolated enzyme for validating the in silico strategy. Among the tested molecules, five of them behave as SIRT1 enzyme activators. Due to the superior response in activating the enzyme and its favorable calculated physico-chemical properties, compound 8 was further characterized in ex vivo studies on isolated and perfused rat hearts submitted to ischemia/reperfusion (I/R) period. The pharmacological profile of compound 8, suggests that this molecule represents a prototypic SIRT1 activator with satisfactory drug-like profile, paving the way for developing novel epigenetic cardioprotective agents.
Ce, RodrigoCouto, Gabriela KleinPacheco, Barbara ZocheDallemole, Danieli Rosane...
9页
查看更多>>摘要:Breast cancer is the most common cancers among women and is one of the main causes of morbidity and mortality in this population. In this study, we aimed to conjugate doxorubicin (DOX), a drug widely used in cancer chemotherapy, and folic acid (FA), a ligand targeted for cancer therapy, to lipid-core nanocapsules (LNC), and evaluate the efficacy of the nanoformulation against triple-negative breast cancer (TNBC) MDA-MB-231 cells that overexpress folate receptors (FRs). We performed cell viability assays, quantitative real-time PCR (qRTPCR), cell migration assay, and clonogenic assay, as well as measured the levels of nitric oxide (NO) generated and cellular uptake. The results showed that the nanoformulation reduced cell viability. The results of qRT-PCR analysis revealed that the nanoformulation induced apoptosis of MDA-MB-231 cells. The mRNA expression levels of Cat and MnSod were increased when the nanoformulation was compared to the doxorubicin solution. Furthermore, the nanoformulation significantly decreased the migration of breast cancer cells in vitro and inhibited colony formation. Additionally, the expression of iNOS in MDA-MB-231 cells was higher when the nanoformulation was used compared to the doxorubicin solution. Cellular uptake was observed after incubating the MDA-MB-231 cells with the fluorescent-labeled nanoformulation. In conclusion, we developed a promising nanoformulation for the treatment of TNBC. Further studies are necessary to demonstrate the in vivo efficacy of this formulation.