首页期刊导航|Toxicology and Applied Pharmacology
期刊信息/Journal information
Toxicology and Applied Pharmacology
Academic Press
Toxicology and Applied Pharmacology

Academic Press

0041-008X

Toxicology and Applied Pharmacology/Journal Toxicology and Applied PharmacologySCIISTP
正式出版
收录年代

    Peripheral metabolic effects of ozone exposure in healthy and diabetic rats on normal or high -cholesterol diet

    Snow, Samantha J.Henriquez, Andres R.Fisher, AnnaVallanat, Beena...
    16页
    查看更多>>摘要:Epidemiological studies show that individuals with underlying diabetes and diet-associated ailments are more susceptible than healthy individuals to adverse health effects of air pollution. Exposure to air pollutants can induce metabolic stress and increase cardiometabolic disease risk. Using male Wistar and Wistar-derived Goto-Kakizaki (GK) rats, which exhibit a non-obese type-2 diabetes phenotype, we investigated whether two key metabolic stressors, type-2 diabetes and a high-cholesterol atherogenic diet, exacerbate ozone-induced metabolic effects. Rats were fed a normal control diet (ND) or high-cholesterol diet (HCD) for 12 weeks and then exposed to filtered air or 1.0-ppm ozone (6 h/day) for 1 or 2 days. Metabolic responses were analyzed at the end of each day and after an 18-h recovery period following the 2-day exposure. In GK rats, baseline hyperglycemia and glucose intolerance were exacerbated by HCD vs. ND and by ozone vs. air. HCD also resulted in higher insulin in ozone-exposed GK rats and circulating lipase, aspartate transaminase, and alanine transaminase in all groups (Wis-tar>GK). Histopathological effects induced by HCD in the liver, which included macrovesicular vacuolation and hepatocellular necrosis, were more severe in Wistar vs. GK rats. Liver gene expression in Wistar and GK rats fed ND showed numerous strain differences, including evidence of increased lipid metabolizing activity and ozone-induced alterations in glucose and lipid transporters, specifically in GK rats. Collectively, these findings indicate that peripheral metabolic alterations induced by diabetes and high-cholesterol diet can enhance susceptibility to the metabolic effects of inhaled pollutants.

    Ribavirin inhibits colorectal cancer growth by downregulating PRMT5 expression and H3R8me2s and H4R3me2s accumulation

    Ge, SuyinZhang, QingqingChen, YonglinTian, Yizhen...
    11页
    查看更多>>摘要:Eukaryotic translation initiation factor 4E (eIF4E) and protein arginine methyltransferase 5 (PRMT5) are frequently overexpressed in colorectal cancer (CRC) tissues and associated with poor prognosis. Ribavirin, the only clinically approved drug known to target eIF4E, is an anti-viral molecule currently used in hepatitis C therapy. The potential of ribavirin to treat CRC remains largely unknown. Ribavirin treatment in CRC cell lines drastically inhibited cell proliferation and colony formation, induced S phase arrest and reduced cyclin D1, cyclin A/E and proliferating cell nuclear antigen (PCNA) levels in vitro, and suppressed tumorigenesis in mouse model of colitis-associated CRC. Mechanistically, ribavirin treatment significantly reduced PRMT5 and eIF4E protein levels and the accumulation of symmetric dimethylation of histone 3 at arginine 8 (H3R8me2s) and that of histone 4 at arginine 3 (H4R3me2s). Importantly, inhibition of PRMT5 by ribavirin resulted in promoted H3R8 methylation in eIF4E promoter region. Our results demonstrate the anti-cancer efficacy of ribavirin in CRC and suggest that the anti-cancer efficacy of ribavirin may be mediated by downregulating PRMT5 levels but not its enzymatic activity.