首页期刊导航|Toxicology and Applied Pharmacology
期刊信息/Journal information
Toxicology and Applied Pharmacology
Academic Press
Toxicology and Applied Pharmacology

Academic Press

0041-008X

Toxicology and Applied Pharmacology/Journal Toxicology and Applied PharmacologySCIISTP
正式出版
收录年代

    Health disparities: Intracellular consequences of social determinants of health

    Emeny, Rebecca T.Carpenter, David O.Lawrence, David A.
    11页
    查看更多>>摘要:Health disparities exist dependent on socioeconomic status, living conditions, race/ethnicity, diet, and exposures to environmental pollutants. Herein, the various exposures contributing to a person's exposome are collectively considered social determinants of health (SDOH), and the SDOH-exposome impacts health more than health care. This review discusses the extent of evidence of the physiologic consequences of these exposures at the intracellular level. We consider how the SDOH-exposome, which captures how individuals live, work and age, induces cell processes that modulate a conceptual "redox rheostat." Like an electrical resistor, the SDOH-exposome, along with genetic predisposition and age, regulate reductive and oxidative (redox) stress circuits and thereby stimulate inflammation. Regardless of the source of the SDOH-exposome that induces chronic inflammation and immunosenescence, the outcome influences cardiometabolic diseases, cancers, infections, sepsis, neurodegeneration and autoimmune diseases. The endogenous redox rheostat is connected with regulatory molecules such as NAD(+)/NADH and SIRT1 that drive redox pathways. In addition to these intracellular and mitochondrial processes, we discuss how the SDOH-exposome can influence the balance between metabolism and regulation of immune responsiveness involving the two main molecular drivers of inflammation, the NLRP3 inflammasome and NF-kappa B induction. Mitochondrial and inflammasome activities play key roles in mediating defenses against pathogens and controlling inflammation before diverse cell death pathways are induced. Specifically, pyroptosis, cell death by inflammation, is intimately associated with common disease outcomes that are influenced by the SDOH-exposome. Redox influences on immunometabolism including protein cysteines and ion fluxes are discussed regarding health outcomes. In summary, this review presents a translational research perspective, with evidence from in vitro and in vivo models as well as clinical and epidemiological studies, to outline the intracellular consequences of the SDOH-exposome that drive health disparities in patients and populations. The relevance of this conceptual and theoretical model considering the SARS-CoV-2 pandemic are highlighted. Finally, the case of asthma is presented as a chronic condition that is modified by adverse SDOH exposures and is manifested through the dysregulation of immune cell redox regulatory processes we highlight in this review.

    S-(+)-Pentedrone and R-(+)-methylone as the most oxidative and cytotoxic enantiomers to dopaminergic SH-SY5Y cells: Role of MRP1 and P-gp in cathinones enantioselectivity

    Silva, BarbaraPalmeira, AndreiaSilva, RenataFernandes, Carla...
    12页
    查看更多>>摘要:Cathinone derivatives are the most representative group within new drugs market, which have been described as neurotoxic. Since cathinones, as pentedrone and methylone, are available as racemates, it is our aim to study the neuronal cytotoxicity induced by each enantiomer. Therefore, a dopaminergic SH-SY5Y cell line was used to evaluate the hypothesis of enantioselectivity of pentedrone and methylone enantiomers on cytotoxicity, oxidative stress, and membrane efflux transport (confirmed by in silico studies). Our study demonstrated enantioselectivity of these cathinones, being the S-(+)-pentedrone and R-(+)-methylone the most oxidative enantiomers and also the most cytotoxic, suggesting the oxidative stress as main cytotoxic mechanism, as previously described in in vitro studies. Additionally, the efflux transporter multidrug resistance associated protein 1 (MRP1) seems to play, together with GSH, a selective protective role against the cytotoxicity induced by R-(-)-pentedrone enantiomer. It was also observed an enantioselectivity in the binding to P-glycoprotein (P-gp), another efflux protein, being the R-(-)-pentedrone and S-(-)-methylone the most transported enantiomeric compounds. These results were confirmed, in silico, by docking studies, revealing that R-(-)-pentedrone is the enantiomer with highest affinity to MRP1 and S-(-)-methylone and R-(-)-pentedrone are the enantiomers with highest affinity to P-gp. In conclusion, our data demonstrated that pentedrone and methylone present enantioselectivity in their cytotoxicity, which seems to involve different oxidative reactivity as well as different affinity to the P-gp and MRP1 that together with GSH play a protective role.

    CDK9 inhibition improves diabetic nephropathy by reducing inflammation in the kidneys

    Yang, XiaojingLuo, WuLi, LiHu, Xiang...
    10页
    查看更多>>摘要:Diabetic nephropathy (DN) is a chronic inflammatory renal disease induced by hyperglycemia. Recent studies have implicated cyclin-dependent kinase 9 (CDK9) in inflammatory responses and renal fibrosis. In this study, we explored a potential role of CDK9 in DN by using cultured mouse mesangial cell line SV40 MES-13 and streptozotocin-induced type 1 mouse model of diabetes. We inhibited CDK9 in mice and in cultured cells by a highly selective CDK9 inhibitor, LDC000067 (LDC), and evaluated inflammatory and fibrogenic outcome by mRNA and protein analyses. Our studies show that treatment of diabetic mice with LDC significantly inhibits the levels of inflammatory cytokines and fibrogenic genes in kidney specimens. These reductions were associated with improved renal function. We also found that LDC treatment suppressed MAPK-AP1 activation. We then confirmed the involvement of CDK9 in cultured SV40 MES-13 cells and showed that deficiency in CDK9 prevents glucose-induced inflammatory and fibrogenic proteins. This protection was also afforded by suppression of MAPK-AP1. Taken together, our results how that hyperglycemia activates CDK9-MAPK-AP1 axis in kidneys to induce inflammation and fibrosis, leading to renal dysfunction. Our findings also suggest that CDK9 may serve as a potential therapeutic target for DN.

    S-allyl cysteine ameliorates heat stress-induced oxidative stress by activating Nrf2/HO-1 signaling pathway in BMECs

    Wang, YueWang, Hui-LiXing, Guang-DongQian, Yong...
    10页
    查看更多>>摘要:Heat stress-induced oxidative stress in bovine mammary epithelial cells (BMECs) threatens the normal growth and development of bovine mammary tissue, resulting in lower milk production of dairy cows. The aim of the present study is to investigate the protective effects of S-allyl cysteine (SAC), an organosulfur component extracted from aged garlic, on heat stress-induced oxidative stress and apoptosis in BMECs and to explore its underlying mechanisms. Our results showed that heat stress treatment considerably decreased cell viability, whereas SAC treatment dose-dependently restored cell viability of BMECs under heat-stress conditions. In addition, SAC protected BMECs from heat stress-induced oxidative damage by inhibiting the excessive accumulation of reactive oxygen species (ROS) and increasing the activity of antioxidant enzymes. It also inhibited heat stress-induced apoptosis by reducing the ratio of Bax/Bcl-2 and blocking proteolytic the cleavage of caspase3 in BMECs. Interestingly, we found that the protective effect of SAC on heat stress-induced oxidative stress and apoptosis was dependent on the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. SAC promoted the Nrf2 nuclear translocation in heat stress-induced BMECs. The results were also validated by Nrf2 and Keap1 knockdown experiments further demonstrating that Nrf-2 was indeed involved in the protective effect of SAC on heat stress-induced oxidative damage and apoptosis. In summary, our results showed that SAC could protect BMECs from heat stress-induced injury by mediating the Nrf2/HO-1 signaling pathway, suggesting that SAC could be considered as a therapeutic drug for attenuating heat stress-induced mammary gland diseases.

    Involvement of TCF7L2 in generation of morphine-induced antinociceptive tolerance and hyperalgesia by modulating TLR4/ NF-kappa B/NLRP3 in microglia

    Chen, JingWang, GuonianSun, TingtingMa, Chao...
    11页
    查看更多>>摘要:Morphine is an opioid agonist and a nonselective mu, kappa and delta receptor agonist. It is a commonly used analgesic drug for the treatment of acute and chronic pain as well as cancer pain. Morphine is particularly important to address the problem of morphine tolerance. Tcf7l2, known as a risk gene for schizophrenia and autism, encodes a member of the LEF1/TCF transcription factor family. TCF7L2 is an important transcription factor that is upregulated in neuropathic pain models. However, the relationship between TCF7L2 and morphine tolerance has not been reported. In this study, we found that morphine tolerance led to the upregulation of TCF7L2 in the spinal cord, and also led to the upregulation of TCF7L2 expression in glial cells, which promoted inflammation related signal, and activated TLR4 / NF-kappa B/NLRP3 pathway. In addition, TCF7L2 regulated microglial cell activation induced by chronic morphine treatment. Mechanically, we found that TCF7L2 transcriptionally regulated TLR4 expression, and the depletion of TCF7L2 alleviated morphine tolerance induced by chronic morphine treatment, and further alleviated pain hypersensitivity induced by chronic morphine treatment. We therefore suggested that TCF7L2 regulates the activation of TLR4/ NF-kappa B/NLRP3 pathway in microglia, and is involved in the formation of morphine tolerance. Our results provide a new idea for the regulation mechanism of morphine tolerance.

    Salidroside alleviates diabetic neuropathic pain through regulation of the AMPK-NLRP3 inflammasome axis

    Zheng, TaoWang, QibinBian, FangZhao, Yan...
    12页
    查看更多>>摘要:High glucose (HG)-induced nucleotide-binding and oligomerization (NACHT) domain, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome activation leads to diabetic neuropathic pain. We recently showed that salidroside could suppress NLRP3 inflammasome activation in hepatocytes exposed to HG. The aim of this study was to evaluate the analgesic effect of salidroside on diabetic rats and to explore its underlying mechanisms. Rat models with diabetic neuropathic pain were induced by high-fat diet feeding combined with low dose streptozotocin injections. Doses of salidroside at 50 and 100 mg.kg(-1).day(-1) were administered by gavage to diabetic rats for 6 weeks. Mechanical allodynia test, thermal hyperalgesia test and biochemical analysis were performed to evaluate therapeutic effects. Primary dorsal root ganglion (DRG) cells exposed to HG at 45 mM were used to further study the effects of salidroside on the AMP-activated protein kinase (AMPK)-NLRP3 inflammasome axis and insulin sensitivity in vitro. Salidroside administration improved hyperglycemia, ameliorated insulin resistance, and alleviated neuropathic pain in diabetic rats. Moreover, salidroside induced AMPK activation and suppressed NLRP3 inflammasome activation in the DRGs of diabetic rats. In addition, salidroside treatment relieved oxidative stress, improved insulin sensitivity and regulated the AMPK-NLRP3 inflammasome axis in HG-treated DRGs in vitro. Furthermore, AMPK inhibition in vivo or AMPK silencing in vitro abolished the beneficial effects of salidroside on diabetic neuropathic pain. Together, these results indicate that salidroside alleviates diabetic neuropathic pain through its regulation of the AMPK-NLRP3 inflammasome axis in DRGs.

    Evaluation of adenosine A1 receptor agonists as neuroprotective countermeasures against Soman intoxication in rats

    Meads, Kristy L.Thomas, Thaddeus P.Langston, Jeffrey L.Myers, Todd M....
    10页
    查看更多>>摘要:Soman, an organophosphorus (OP) compound, disrupts nervous system function through inactivation of acetylcholinesterase (AChE), the enzyme that breaks down acetylcholine at synapses. Left untreated, a state of prolonged seizure activity (status epilepticus, SE) is induced, causing widespread neuronal damage and associated cognitive and behavioral impairments. Previous research demonstrated that therapeutic stimulation of A1 adenosine receptors (A1ARs) can prevent or terminate soman-induced seizure. This study examined the ability of three potent A1AR agonists to provide neuroprotection and, ultimately, prevent observable cognitive and behavioral deficits following exposure to soman. Sprague Dawley rats were challenged with a seizure-inducing dose of soman (1.2 x LD50) and treated 1 min later with one of the following A1AR agonists: (6)-Cyclopentyladenosine (CPA), 2-Chloro-N6-cyclopentyladenosine (CCPA) or N-bicyclo(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (cdENBA). An active avoidance shuttle box task was used to evaluate locomotor responses to aversive stimuli at 3, 7 and 14 days post-exposure. Animals treated with CPA, CCPA or cdENBA demonstrated a higher number of avoidance responses and a faster reaction to the aversive stimulus than the soman/saline control group across all three sessions. Findings suggest that A1AR agonism is a promising neuroprotective countermeasure, capable of preventing the long-term deficits in learning and memory that are characteristic of soman intoxication.