查看更多>>摘要:This paper presents a comprehensive and practical framework for automatic generation of real-time tailored messages in behavior change applications. Basic aspects of motivational messages are time, intention, content and presentation. Tailoring of messages to the individual user may involve all aspects of communication. A linear modular system is presented for generating such messages. It is explained how properties of user and context are taken into account in each of the modules of the system and how they affect the linguistic presentation of the generated messages. The model of motivational messages presented is based on an analysis of existing literature as well as the analysis of a corpus of motivational messages used in previous studies. The model extends existing 'ontology-based' approaches to message generation for real-time coaching systems found in the literature. Practical examples are given on how simple tailoring rules can be implemented throughout the various stages of the framework. Such examples can guide further research by clarifying what it means to use e.g. user targeting to tailor a message. As primary example we look at the issue of promoting daily physical activity. Future work is pointed out in applying the present model and framework, defining efficient ways of evaluating individual tailoring components, and improving effectiveness through the creation of accurate and complete user- and context models. (C) 2015 Elsevier Inc. All rights reserved.
查看更多>>摘要:Document collections resulting from searches in the biomedical literature, for instance, in PubMed, are often so large that some organization of the returned information is necessary. Clustering is an efficient tool for organizing search results. To help the user to decide how to continue the search for relevant documents, the content of each cluster can be characterized by a set of representative keywords or cluster labels. As different users may have different interests, it can be desirable with solutions that make it possible to produce labels from a selection of different topical categories. We therefore introduce the concept of multi-focus cluster labeling to give users the possibility to get an overview of the contents through labels from multiple viewpoints.
查看更多>>摘要:The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809 +/- 0.05 mm and 1.038 degrees +/- 0.05 degrees, which was sufficient to meet the clinical requirements. (C) 2015 Elsevier Inc. All rights reserved.
Villablanca, J. PabloPajukanta, PaiviVinuela, FernandoHsu, William...
11页
查看更多>>摘要:The electronic health record (EHR) contains a diverse set of clinical observations that are captured as part of routine care, but the incomplete, inconsistent, and sometimes incorrect nature of clinical data poses significant impediments for its secondary use in retrospective studies or comparative effectiveness research. In this work, we describe an ontology-driven approach for extracting and analyzing data from the patient record in a longitudinal and continuous manner. We demonstrate how the ontology helps enforce consistent data representation, integrates phenotypes generated through analyses of available clinical data sources, and facilitates subsequent studies to identify clinical predictors for an outcome of interest. Development and evaluation of our approach are described in the context of studying factors that influence intracranial aneurysm (ICA) growth and rupture. We report our experiences in capturing information on 78 individuals with a total of 120 aneurysms. Two example applications related to assessing the relationship between aneurysm size, growth, gene expression modules, and rupture are described. Our work highlights the challenges with respect to data quality, workflow, and analysis of data and its implications toward a learning health system paradigm. (C) 2015 Elsevier Inc. All rights reserved.
Alberto Maldonado, JoseMoner, DavidRobles, MontserratBosca, Diego...
10页
查看更多>>摘要:Clinical information models are increasingly used to describe the contents of Electronic Health Records. Implementation guides are a common specification mechanism used to define such models. They contain, among other reference materials, all the constraints and rules that clinical information must obey. However, these implementation guides typically are oriented to human-readability, and thus cannot be processed by computers. As a consequence, they must be reinterpreted and transformed manually into an executable language such as Schematron or Object Constraint Language (OCL). This task can be difficult and error prone due to the big gap between both representations. The challenge is to develop a methodology for the specification of implementation guides in such a way that humans can read and understand easily and at the same time can be processed by computers. In this paper, we propose and describe a novel methodology that uses archetypes as basis for generation of implementation guides. We use archetypes to generate formal rules expressed in Natural Rule Language (NRL) and other reference materials usually included in implementation guides such as sample XML instances. We also generate Schematron rules from NRL rules to be used for the validation of data instances. We have implemented these methods in LinkEHR, an archetype editing platform, and exemplify our approach by generating NRL rules and implementation guides from EN ISO 13606, openEHR, and HL7 CDA archetypes. (C) 2015 Elsevier Inc. All rights reserved.
Dos Reis, Julio CesarPruski, CedricDa Silveira, MarcosReynaud-Delaitre, Chantal...
21页
查看更多>>摘要:Background: Knowledge Organization Systems (KOS) and their associated mappings play a central role in several decision support systems. However, by virtue of knowledge evolution, KOS entities are modified over time, impacting mappings and potentially turning them invalid. This requires semi-automatic methods to maintain such semantic correspondences up-to-date at KOS evolution time.
Pahl, ChristinaZare, MojtabaNilashi, Mehrbakhshde Faria Borges, Marco Aurelio...
14页
查看更多>>摘要:This work investigates, whether openEHR with its reference model, archetypes and templates is suitable for the digital representation of demographic as well as clinical data. Moreover, it elaborates openEHR as a tool for modelling Hospital Information Systems on a regional level based on a national logical infrastructure. OpenEHR is a dual model approach developed for the modelling of Hospital Information Systems enabling semantic interoperability. A holistic solution to this represents the use of dual model based Electronic Healthcare Record systems. Modelling data in the field of obstetrics is a challenge, since different regions demand locally specific information for the process of treatment. Smaller health units in developing countries like Brazil or Malaysia, which until recently handled automatable processes like the storage of sensitive patient data in paper form, start organizational reconstruction processes. This archetype proof-of-concept investigation has tried out some elements of the openEHR methodology in cooperation with a health unit in Colombo, Brazil. Two legal forms provided by the Brazilian Ministry of Health have been analyzed and classified into demographic and clinical data. LinkEHR-Ed editor was used to read, edit and create archetypes. Results show that 33 clinical and demographic concepts, which are necessary to cover data demanded by the Unified National Health System, were identified. Out of the concepts 61% were reused and 39% modified to cover domain requirements. The detailed process of reuse, modification and creation of archetypes is shown. We conclude that, although a major part of demographic and clinical patient data were already represented by existing archetypes, a significant part required major modifications. In this study openEHR proved to be a highly suitable tool in the modelling of complex health data. In combination with LinkEHR-Ed software it offers user-friendly and highly applicable tools, although the complexity built by the vast specifications requires expert networks to define generally excepted clinical models. Finally, this project has pointed out main benefits enclosing high coverage of obstetrics data on the Clinical Knowledge Manager, simple modelling, and wide network and support using openEHR. Moreover, barriers described are enclosing the allocation of clinical content to respective archetypes, as well as stagnant adaption of changes on the Clinical Knowledge Manager leading to redundant efforts in data contribution that need to be addressed in future works. (C) 2015 Elsevier Inc. All rights reserved.
查看更多>>摘要:Accurate electronic health records are important for clinical care and research as well as ensuring patient safety. It is crucial for misspelled words to be corrected in order to ensure that medical records are interpreted correctly. This paper describes the development of a spelling correction system for medical text. Our spell checker is based on Shannon's noisy channel model, and uses an extensive dictionary compiled from many sources. We also use named entity recognition, so that names are not wrongly corrected as misspellings. We apply our spell checker to three different types of free-text data: clinical notes, allergy entries, and medication orders: and evaluate its performance on both misspelling detection and correction. Our spell checker achieves detection performance of up to 94.4% and correction accuracy of up to 88.2%. We show that high-performance spelling correction is possible on a variety of clinical documents. (C) 2015 Elsevier Inc. All rights reserved.
查看更多>>摘要:Background: When medical data have been successfully recorded or exchanged between systems there appear a need to present the data consistently to ensure that it is clearly understood and interpreted. A standard based user interface can provide interoperability on the visual level.
Dumontier, MichelBoyce, Richard D.Ayvaz, SerkanHorn, John...
12页
查看更多>>摘要:Although potential drug drug interactions (PDDIs) are a significant source of preventable drug-related harm, there is currently no single complete source of PDDI information. In the current study, all publically available sources of PDDI information that could be identified using a comprehensive and broad search were combined into a single dataset. The combined dataset merged fourteen different sources including 5 clinically-oriented information sources, 4 Natural Language Processing (NLP) Corpora, and 5 Bioinfor matics/Pharmacovigilance information sources. As a comprehensive PDDI source, the merged dataset might benefit the pharmacovigilance text mining community by making it possible to compare the representativeness of NLP corpora for PDDI text extraction tasks, and specifying elements that can be useful for future PDDI extraction purposes.