首页期刊导航|Journal of Neurophysiology
期刊信息/Journal information
Journal of Neurophysiology
The Society
Journal of Neurophysiology

The Society

0022-3077

Journal of Neurophysiology/Journal Journal of NeurophysiologySCIISTP
正式出版
收录年代

    Intra- and inter-regional dynamics in cortical-striatal-tegmental networks

    Dede, Adam J. O.Mishra, AshutoshMarzban, NaderReichert, Robert...
    18页
    查看更多>>摘要:It is increasingly recognized that networks of brain areas work together to accomplish computational goals. However, functional connectivity networks are not often compared between different behavioral states and across different frequencies of electrical oscillatory signals. In addition, connectivity is always defined as the strength of signal relatedness between two atlas-based anatomical locations. Here, we performed an exploratory analysis using data collected from high-density arrays in the prefrontal cortex (PFC), striatum (STR), and ventral tegmental area (VTA) of male rats. These areas have all been implicated in a wide range of different tasks and computations including various types of memory as well as reward valuation, habit formation and execution, and skill learning. Novel intraregional clustering analyses identified patterns of spatially restricted, temporally coherent, and frequency-specific signals that were reproducible across days and were modulated by behavioral states. Multiple clusters were identified within each anatomical region, indicating a mesoscopic scale of organization. Generalized eigendecomposition (GED) was used to dimension-reduce each cluster to a single component time series. Dense intercluster connectivity was modulated by behavioral state, with connectivity becoming reduced when the animals were exposed to a novel object, compared with a baseline condition. Behavior-modulated connectivity changes were seen across the spectrum, with delta, theta, and gamma all being modulated. These results demonstrate the brain's ability to reorganize functionally at both the intra- and inter-regional levels during different behavioral states. NEW & NOTEWORTHY We applied novel clustering techniques to discover functional subregional anatomical patches that changed with behavioral conditions but were frequency specific and stable across days. By taking into account these changes in intraregional signal generator location and extent, we were able to reveal a richer picture of inter-regional functional connectivity than would otherwise have been possible. These findings reveal that the brain's functional organization changes with state at multiple levels of scale.

    Assessing corticospinal excitability and reaching hand choice during whole body motion

    Wijdenes, Leonie OostwoudWynn, Syanah C.Roesink, Bela S.Schutter, Dennis J. L. G....
    9页
    查看更多>>摘要:Behavioral studies have shown that humans account for inertial acceleration in their decisions of hand choice when reaching during body motion. Physiologically, it is unclear at what stage of movement preparation information about body motion is integrated with the process of hand selection. Here, we addressed this question by applying transcranial magnetic stimulation over left motor cortex (M1) of human participants who performed a preferential reach task while they were sinusoidally translated on a linear motion platform. If M1 only represents a read-out of the final hand choice, we expect the body motion not to affect the motor-evoked potential (MEP) amplitude. If body motion biases the hand selection process before target onset, we expect corticospinal excitability to be influenced by the phase of the motion, with larger MEP amplitudes for phases that show a bias to using the right hand. Behavioral results replicate our earlier findings of a sinusoidal modulation of hand choice bias with motion phase. MEP amplitudes also show a sinusoidal modulation with motion phase, suggesting that body motion influences corticospinal excitability, which may ultimately reflect changes of hand preference. The modulation being present before target onset suggests that competition between hands is represented throughout the corticospinal tract. Its phase relationship with the motion profile indicates that other processes after target onset take up time until the hand selection process has been completely resolved, and the reach is initiated. NEW & NOTEWORTHY Full body-motion biases decisions of hand choice. We examined the signatures of this bias in hand pref-erence in corticospinal excitability before a reach target was presented. Our results show that behavior and corticospinal excitability modulate depending on the state of the body in motion. This suggests that information about body motion penetrates deeply within the motor system.

    Cardiovascular deconditioning increases GABA signaling in the nucleus tractus solitarii

    Lima-Silveira, LudmilaHasser, Eileen M.Kline, David D.
    12页
    查看更多>>摘要:The nucleus tractus solitarii (nTS) is the major integrative brainstem region for autonomic modulation and processing of cardiovascular reflexes. GABA and glutamate are the main inhibitory and excitatory neurotransmitters, respectively, within this nucleus. Alterations in the GABA-glutamate regulation in the nTS are related to numerous cardiovascular comorbidities. Bedridden individuals and people exposed to microgravity exhibit dysautonomia and cardiovascular deconditioning that are mimicked in the hind limb unloading (HU) rat model. We have previously shown in the nTS that HU increases glutamatergic neurotransmission yet decreases neuronal excitability. In this study, we investigated the effects of HU on nTS GABAergic neurotransmission. We hypothesized that HU potentiates GABA signaling via increased GABAergic release and postsynaptic GABA receptor expression. Following HU or control postural exposure, GABAergic neurotransmission was assessed using whole cell patch clamp whereas the magnitude of GABA release was evaluated via an intensity-based GABA sensing fluorescence reporter (iGABASnFR). In response to GABA interneuron stimulation, the evoked inhibitory postsynaptic current (nTS-IPSC) amplitude and area, as well as iGABASnFR fluorescence, were greater in HU than in control. HU also elevated the frequency but not the amplitude of spontaneous miniature IPSCs. Picoapplication of GABA produced similar postsynaptic current responses in nTS neurons of HU and control. Moreover, HU did not alter GABAA receptor a1 subunit expression, indicating minimal alterations in postsynaptic membrane receptor expression. These results indicate that HU increases GABAergic signaling in the nTS likely via augmented release of GABA from presynaptic terminals. Altogether, our data indicate GABA plasticity contributes to the autonomic and cardiovascular alterations following cardiovascular deconditioning (CVD). NEW & NOTEWORTHY Gravity influences distribution of blood volume and autonomic function. Microgravity and prolonged bed rest induce cardiovascular deconditioning (CVD). We used hindlimb unloading (HU), a rat analog for bed rest, to investigate CVD-induced neuroplasticity in the brainstem. Our data demonstrate that HU increases GABA modulation of nucleus tractus solitarii (nTS) neurons via presynaptic plasticity. Given the importance of nTS in integrating cardiovascular reflexes, this study provides new evidence on the central mechanisms behind CVD following HU.

    Human KCNQ5 de novo mutations underlie epilepsy and intellectual disability

    Wei, Aguan D.Wakenight, PaulZwingman, Theresa A.Bard, Angela M....
    22页
    查看更多>>摘要:We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID), and/or epilepsy by whole exome sequencing. These variants, comprising two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R; CAUSES Study; EPGEN Study; Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Am J Hum Genet 101: 65-74, 2017). Surprisingly, all eight missense variants resulted in gain of function (GOF) due to hyperpolarized voltage dependence of activation or slowed deactivation kinetics, whereas the two nonsense variants were confirmed to be loss of function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: milder presentations with LOF or smaller GOF shifts in voltage dependence [change in voltage at half-maximal conduction (Delta V-50) = similar to-15 mV] and severe presentations with larger GOF shifts in voltage dependence (Delta V-50 = similar to-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created with CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy. NEW & NOTEWORTHY Six novel de novo human KCNQ5 variants were identified from children with neurodevelopmental delay, intellectual disability, and/or epilepsy. Expression of these variants along with four previously reported KCNQ5 variants from a similar cohort revealed GOF potassium channels, negatively shifted in V-50 of activation and/or delayed deactivation kinetics. GOF is extended to KCNQ5/3 heteromeric channels, making these the predominant channels affected in heterozygous de novo patients. Kcnq5 LOF mice exhibited seizures, consistent with in vivo pathogenicity.

    The potassium channel auxiliary subunit Kv? 2 (Kcnab2) regulates Kv1 channels and dopamine neuron firing

    Yee, Joshua X.Rastani, ArianaSoden, Marta E.
    11页
    查看更多>>摘要:Ion channel complexes typically consist of both pore-forming subunits and auxiliary subunits that do not directly conduct current but can regulate trafficking or alter channel properties. Isolating the role of these auxiliary subunits in neurons has proved difficult due to a lack of specific pharmacological agents and the potential for developmental compensation in constitutive knockout models. Here, we use cell-type-specific viral-mediated CRISPR/Cas9 mutagenesis to target the potassium channel auxiliary subunit Kvli2 (Kcnab2) in dopamine neurons in the adult mouse brain. We find that mutagenesis of Kcnab2 reduces surface expression of Kv1.2, the primary Kv1 pore-forming subunit expressed in dopamine neurons, and shifts the voltage dependence of inactivation of potassium channel currents toward more hyperpolarized potentials. Loss of Kcnab2 broadens the action potential waveform in spontaneously firing dopamine neurons recorded in slice, reduces the afterhyperpolarization amplitude, and increases spike timing irregularity and excitability, all of which is consistent with a reduction in potassium channel current. Similar effects were observed with mutagenesis of the pore-forming subunit Kv1.2 (Kcna2). These results identify Kv1 currents as important contributors to dopamine neuron firing and demonstrate a role for Kvli2 subunits in regulating the trafficking and gating properties of these ion channels. Furthermore, they demonstrate the utility of CRISPR-mediated mutagenesis in the study of previously difficult to isolate ion channel subunits.NEW & NOTEWORTHY Here, we utilize CRISPR/Cas9-mediated mutagenesis in dopamine neurons in mice to target the gene encoding Kvli2, an auxiliary subunit that forms a part of Kv1 channel complexes. We find that the absence of Kvli2 alters action potential properties by reducing surface expression of pore-forming subunits and shifting the voltage dependence of channel inactivation. This work establishes a new function for Kvli2 subunits and Kv1 complexes in regulating dopamine neuron activity.

    Greater neuromuscular fatigue following low-load blood flow restriction than non-blood flow restriction resistance exercise among recreationally active men

    Hill, Ethan C.Rivera, Paola M.Proppe, Chris E.Rojas, David H. Gonzalez...
    13页
    查看更多>>摘要:The purpose of this study was to examine the acute effects of low-load blood flow restriction (LLBFR) and low-load non-BF R (LL) on neuromuscular function after a bout of standardized fatiguing leg extension muscle actions. Fourteen men (mean age +/- SD = 23 +/- 4 yr) volunteered to participate in this investigation and randomly performed LLBFR and LL on separate days. Resistance exercise consisted of 75 isotonic unilateral leg extension muscle actions performed at 30% of one-repetition maximum. Before (pretest) and after (posttest) performance of each bout of exercise, strength and neural assessments were determined. There were no pretest to posttest differences between LLBFR and LL for maximal voluntary isometric contraction (MVIC) torque or V wave/ M wave responses (muscle compound action potentials assessed during a superimposed MVIC muscle action), which exhibited decreases (collapsed across condition) of 41.2% and 26.2%, respectively. There were pretest to posttest decreases in peak twitch torque (36.0% ) and surface electromyography amplitude (sEMG) (29.5%) for LLBFR but not LL and larger decreases in voluntary activation for LLBFR (11.3%) than for LL (4.5%). These findings suggested that LLBFR elicited greater fatigue-induced decreases in several indexes of neuromuscular function relative to LL. Despite this, both LLBFR and LL resulted in similar decrements in performance as assessed by maximal strength. NEW & NOTEWORTHY The application of blood flow restriction induces greater acute neuromuscular fatigue relative to nonrestricted conditions. Resistance exercise with blood flow restriction elicited a greater reduction in twitch responses. These neuromuscular differences might explain the more favorable adaptations achieved with blood flow restriction that are likely a function of metabolic stress and subsequent changes in efferent neural drive.

    People with multiple sclerosis have reduced TMS-evoked motor cortical output compared with healthy individuals during fatiguing submaximal contractions

    Brotherton, Emily J.Sabapathy, SurendranMckeown, Daniel J.Kavanagh, Justin J....
    13页
    查看更多>>摘要:People with multiple sclerosis (PwMS) typically experience greater levels of exercise-induced fatigue compared with healthy individu-als. Therefore, this study examined performance fatigability in PwMS when executing a prolonged submaximal contraction. Nine PwMS (38 +/- 7 yr, 6 females) and nine healthy controls (35 +/- 6 yr, 4 females) performed an elbow flexion at 15% maximal voluntary con-traction (MVC) for 26 min. MVCs were performed every 2 min during, and following, the contraction to determine if maximal force was impaired by the low-intensity contraction. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the primary motor cortex with a circular coil during each MVC and during the submaximal contraction. Superimposed and resting twitches were calculated from elbow flexion torque, whereas motor-evoked potentials were calculated from biceps brachii electromyography. Ratings of perceived exertion (RPE) were obtained before each MVC. During the fatiguing contraction protocol, the MS group exhibited a reduced MVC torque compared with the healthy control group (P = 0.044), which aligned with group differences in biceps brachii EMG activity (P = 0.022) and superimposed twitch amplitude (P = 0.016). Fatigue-related decrements in MVC torque (P = 0.044) and biceps brachii EMG activity (P = 0.043) demonstrated in the MS group persisted throughout recovery. However, MS did not affect the RPE during the fatigue task. These findings suggest that PwMS may have greater levels of performance fatigability due to decreased voluntary drive from the motor cortex, which is not associated with greater ratings of perceived exertion. NEW & NOTEWORTHY By combining TMS and motor nerve stimulation during a low-intensity exercise task, we were able to uncover the contribution that different levels of the CNS have during fatiguing exercise in PwMS. Our findings are novel and revealed that PwMS experienced decreased voluntary drive from the motor cortex during a low-intensity sustained fatiguing task that was associated with heightened levels of performance fatigability.

    Background suppression of electrical activity is a potential biomarker of subsequent brain injury in a rat model of neonatal hypoxia-ischemia

    Zayachkivsky, A.Lehmkuhle, M. J.Ekstrand, J. J.Dudek, F. E....
    13页
    查看更多>>摘要:Electrographic seizures and abnormal background activity in the neonatal electroencephalogram (EEG) may differentiate between harmful versus benign brain insults. Using two animal models of neonatal seizures, electrical activity was recorded in freely behaving rats and examined quantitatively during successive time periods with field-potential recordings obtained shortly after the brain insult (i.e., 0-4 days). Single-channel, differential recordings with miniature wireless telemetry were used to analyze spontaneous electro-graphic seizures and background suppression of electrical activity after 1) hypoxia-ischemia (HI), which is a model of neonatal encephalopathy that causes acute seizures and a large brain lesion with possible development of epilepsy, 2) hypoxia alone (Ha), which causes severe acute seizures without an obvious lesion or subsequent epilepsy, and 3) sham control rats. Background EEG exhibited increases in power as a function of age in control animals. Although background electrical activity was depressed in all frequency bands immediately after HI, suppression in the I3 and c bands was greatest and lasted longest. Spontaneous electrographic seizures were recorded, but only in a few HI-treated animals. Ha-treated rat pups were similar to sham controls, they had no subsequent spon-taneous electrographic seizures after the treatment and background suppression was only briefly observed in one frequency band. Thus, the normal age-dependent maturation of electrical activity patterns in control animals was significantly disrupted after HI. Suppression of the background EEG observed here after HI-induced acute seizures and subsequent brain injury may be a noninvasive biomarker for detecting severe brain injuries and may help predict subsequent epilepsy. NEW & NOTEWORTHY Biomarkers of neonatal brain injury are needed. Hypoxia-ischemia (HI) in immature rat pups caused severe brain injury, which was associated with strongly suppressed background EEG. The suppression was most robust in the beta and c bands; it started immediately after the HI injury and persisted for days. Thus, background suppression may be a noninvasive biomarker for detecting severe brain injuries and may help predict subsequent epilepsy.

    Properties of Deiters? neurons and inhibitory synaptic transmission in the mouse lateral vestibular nucleus

    Wellings, T. P.Drury, H. R.Jobling, P.Callister, R. J....
    17页
    查看更多>>摘要:Deiters' neurons, located exclusively in the lateral vestibular nucleus (LVN), are involved in vestibulospinal reflexes, innervate extensor motoneurons that drive antigravity muscles, and receive inhibitory inputs from the cerebellum. We investigated intrinsic membrane properties, short-term plasticity, and inhibitory synaptic inputs of mouse Deiters' and non-Deiters' neurons within the LVN. Deiters' neurons are distinguished from non-Deiters' neurons by their very low input resistance (105.8 vs. 521.8 MCI, respectively), long axons that project as far as the ipsilateral lumbar spinal cord, and expression of the cytostructural protein nonphosphorylated neurofilament protein (NPNFP). Whole cell patch-clamp recordings in brain stem slices show that most Deiters' and non-Deiters' neurons were tonically active (>92%). Short-term plasticity was studied by examining discharge rate modulation following release from hyperpolarization [postinhibitory rebound firing (PRF)] and depolarization [firing rate adaptation (FRA)]. PRF and FRA gain were similar in Deiters' and non-Deiters' neurons (PRF 24.9 vs. 20.2 Hz and FRA gain 231.5 vs. 287.8 spikes/s/nA, respectively). Inhibitory synaptic input to both populations showed that GABAergic rather than glycinergic inhibition dominated. However, GABAA miniature inhibitory postsynaptic current (mIPSC) frequency was much higher in Deiters' neurons compared with non-Deiters' neurons (-15.9 vs. 1.4 Hz, respectively). Our data suggest that Deiters' neurons can be reliably identified by their intrinsic membrane and synaptic properties. They are tonically active and glutamatergic, have low sensitivity or "gain," exhibit little adaptation, and receive strong GABAergic input. Deiters' neurons also have minimal short-term plasticity, and together these features suggest they are well suited to a role in encoding tonic signals for the vestibulospinal reflex.NEW & NOTEWORTHY Deiters' neurons within the lateral vestibular nucleus project the length of the spinal cord and activate antigravity extensor muscles. Deiters' neurons were characterized anatomically and physiologically in mice. Deiters' neurons are tonically active, have homogeneous intrinsic membrane properties, including low input resistance, and receive significant GABAAergic synaptic inputs. Deiters' neurons show little modulation in response to current injection. These features are consistent with Deiters' neurons responding to perturbations to maintain posture and balance.

    The legacy of Gerald L. Gottlieb in human movement neuroscience

    Corcos, Daniel M.Myklebust, Barbara M.Latash, Mark L.
    12页
    查看更多>>摘要:In this paper, we review the legacy of Gerald (Gerry) Gottlieb in various fields related to the neural control of human movement. His studies on the myotatic (stretch) reflex and postmyotatic responses to ankle joint perturbations paved the way for current explorations of long-loop reflexes and their role in the control of movement. The dual-strategy hypothesis introduced order into a large body of literature on the triphasic muscle activation patterns seen over a variety of voluntary movements in healthy persons. The dual-strategy hypothesis continues to be important for understanding the performance of subjects with disordered motor control. The principle of linear synergy (covariance of joint torques) was an attempt to solve one of the notorious problems of motor redundancy, which remains an important topic in the field. Gerry's attitude toward the equilibrium-point hypothesis varied between rejection and using it to explore patterns of hypothetical control variables and movement variability. The discovery of reciprocal excitation in healthy neonates fostered other studies of changes in spinal cord physiology as motor skills develop. In addition, studies of people with spasticity and the effects of treatment with intrathecal baclofen were crucial in demonstrating the possibility of unmasking voluntary movements after suppression of the hyperreflexia of spasticity. Gerry Gottlieb contributed a significant body of knowledge that formed a solid foundation from which to study a variety of neurological diseases and their treatments, and a more comprehensive and parsimonious foundation to describe the neural control of human movement.