查看更多>>摘要:One major concern with biosimilars is that small differences compared with reference products might lead to unforeseen immunogenicity, thus affecting patient safety and drug efficacy. Differences could be due to either post-translational modifications of the therapeutic protein and/or to traces of impurities from the manufacturing process. The results presented in this communication illustrate the efforts to assess biosimilarity of a biosimilar candidate to a reference product for a specific group of process-related impurities, the host cell proteins (HCP). Extensive characterization of HCP in the drug substance of a biosimilar candidate revealed the identity of HCP copurifying with the protein of interest and guided process development to improve overall HCP clearance in the downstream process. The data presented illustrate the challenge of matching the reference product on either quantitative or qualitative aspects of HCP impurities. (C) 2015 Wiley Periodicals, Inc.
查看更多>>摘要:Drugs possessing the ability to bind to melanin-rich tissue, such as the eye, are linked with higher ocular exposure, and therefore have the potential to affect the efficacy and safety profiles of therapeutics. A high-throughput melanin chromatographic affinity assay has been developed and validated, which has allowed the rapid melanin affinity assessment for a large number of compounds. Melanin affinity of compounds can be quickly assigned as low, medium, or high melanin binders. A high-throughput chromatographic method has been developed and fully validated to assess melanin affinity of pharmaceuticals and has been useful in predicting ocular tissue distribution in vivo studies. The high-throughput experimental approach has also allowed for a specific training set of 263 molecules for a quantitative structure-affinity relationships (QSAR) method to be developed, which has also been shown to be a predictor of ocular tissue exposure. Previous studies have reported the development of in silico QSAR models based on training sets of relatively small and mostly similar compounds; this model covers a broader range of melanin-binding affinities than what has been previously published and identified several physiochemical descriptors to be considered in the design of compounds where melanin-binding modulation is desired. (C) 2015 Wiley Periodicals, Inc.
查看更多>>摘要:IgG4 antibodies are evolving as an important class of cancer immunotherapies. However, human IgG4 can undergo Fab arm (half molecule) exchange with other IgG4 molecules in vivo. The hinge modification by a point mutation (S228P) prevents half molecule exchange of IgG4. However, the experimental confirmation is still expected by regulatory agencies. Here, we report for the first time the extensive analysis of half molecule exchange for a hinge-modified therapeutic IgG4 molecule, pembrolizumab (Keytruda) targeting programmed death 1 (PD1) receptor that was approved for advanced melanoma. Studies were performed in buffer or human serum using multiple exchange partners including natalizumab (Tysabri) and human IgG4 pool. Formation of bispecific antibodies was monitored by fluorescence resonance energy transfer, exchange with Fc fragments, mixed mode chromatography, immunoassays, and liquid chromatography-mass spectrometry. The half molecule exchange was also examined in vivo in SCID (severe combined immunodeficiency) mice. Both in vitro and in vivo results indicate that the hinge modification in pembrolizumab prevented half molecule exchange, whereas the unmodified counterpart anti-PD1 wt showed active exchange activity with other IgG4 antibodies or self-exchange activity with its own molecules. Our work, as an example expected for meeting regulatory requirements, contributes to establish without ambiguity that hinge-modified IgG4 antibodies are suitable for biotherapeutic applications. (C) 2015 Wiley Periodicals, Inc. and the American Pharmacists Association
查看更多>>摘要:Domain antibodies (dAbs) are single immunoglobulin domains that form the smallest functional unit of an antibody. This study investigates the behavior of these small proteins when covalently attached to the polyethylene glycol (PEG) moiety that is necessary for extending the half-life of a dAb. The effect of the 40 kDa PEG on hydrodynamic properties, particle behavior, and receptor binding of the dAb has been compared by both ensemble solution and surface methods [light scattering, isothermal titration calorimetry (ITC), surface Plasmon resonance (SPR)] and single-molecule atomic force microscopy (AFM) methods (topography, recognition imaging, and force microscopy). The large PEG dominates the properties of the dAb-PEG conjugate such as a hydrodynamic radius that corresponds to a globular protein over four times its size and a much reduced association rate. We have used AFM single-molecule studies to determine the mechanism of PEG-dependent reductions in the effectiveness of the dAb observed by SPR kinetic studies. Recognition imaging showed that all of the PEGylated dAb molecules are active, suggesting that some may transiently become inactive if PEG sterically blocks binding. This helps explain the disconnect between the SPR, determined kinetically, and the force microscopy and ITC results that demonstrated that PEG does not change the binding energy. (C) 2015 Wiley Periodicals, Inc.
查看更多>>摘要:Terahertz time-domain spectroscopy (THz-TDS) has been shown to detect overlapping extended hydration layers around proteins. Here, we used THz-TDS to detect modulation of the extended hydration layer around monoclonal antibodies (mAbs) by the introduction of commonly used excipients. Proline and sucrose altered the hydration layer around a mAb (mAb1), which was observed as a negative shift in the plateau in absorbance above similar to 100 mg/mL mAb1 (similar to 70,000 water molecules per mAb); arginine had no effect. At lower concentrations of similar to 10 mg/mL mAb1 (similar to 700,000 water molecules per mAb) proline and arginine modulated the hydration layer, which was observed as a negative shift in the relative absorbance, whereas sucrose had no effect. The changes in the extended hydration layer were not translated to shifts in the thermal stability or protein:protein interaction parameter. The hydration layer of a second mAb (mAb2) was further shown to be modulated by more complex formulations composed of two or more excipients; although the differences in terahertz absorbance were not predictive of viscosity or long-term stability. THz-TDS promises to be a useful tool for understanding a protein's interaction with excipients in solution and the challenge will be to determine how to apply this knowledge to protein formulation. (C) 2015 Wiley Periodicals, Inc.
查看更多>>摘要:One of the analytical tools for characterization of subvisible particles, which gained popularity over the last years because of its unique capabilities, is the resonance mass measurement technique. However, a challenge that this technique presents is the need to know the exact density of the measured particles in order to obtain accurate size calculations. The density of proteinaceous subvisible particles has not been measured experimentally yet and to date researchers have been using estimated density values. In this paper, we report for a first-time experimental measurements of the density of protein particles (0.2-5 mu m in size) using particles created by stressing three different proteins using four different types of stress conditions. Interestingly, the particle density values that were measured varied between 1.28 and 1.33 g/cm(3) and were lower than previous estimates. Furthermore, it was found that although the density of proteinaceous particles was affected to a very low degree by the stress conditions used to generate them, there is relatively larger difference between particles originating from different classes of proteins (e.g., monoclonal antibody vs. bovine serum albumin). (C) 2015 Wiley Periodicals, Inc.
查看更多>>摘要:Human serum albumin (HSA) is an excipient present in formulations of several recombinant protein products that are approved for clinical use. We investigated the relative contributions of HSA and HSA particles to the generation of antibody responses against recombinant human erythropoietin (rhEPO) and the excipient HSA itself. Protein samples were characterized before injection for quantities of monomeric proteins, soluble protein aggregates, and nano- and micron-sized particles. rhEPO, containing various concentrations of HSA particles, were injected three times a week for 8 weeks into mice. Hematocrits and the production of anti-rhEPO and anti-HSA antibodies were determined at various time points. Levels of antibodies against rhEPO in mice injected with HSA-containing rhEPO were higher than those in mice treated with HSA-free rhEPO. Mice injected with formulations that contained particles of HSA produced strong anti-HSA antibody responses; whereas these responses were greatly reduced when particle-free formulations were administered. In contrast, anti-rhEPO antibody responses were not affected by the presence of particles. (C) 2015 Wiley Periodicals, Inc.
查看更多>>摘要:Protein aggregation and particle formation have been observed when protein solutions contact hydrophobic interfaces, and it has been suggested that this undesirable phenomenon may be initiated by interfacial adsorption and subsequent gelation of the protein. The addition of surfactants, such as polysorbate 20, to protein formulations has been proposed as a way to reduce protein adsorption at silicone oil-water interfaces and mitigate the production of aggregates and particles. In an accelerated stability study, monoclonal antibody formulations containing varying concentrations of polysorbate 20 were incubated and agitated in pre-filled glass syringes (PFS), exposing the protein to silicone oil-water interfaces at the siliconized syringe walls, air-water interfaces, and agitation stress. Following agitation in siliconized syringes that contained an air bubble, lower particle concentrations were measured in the surfactant-containing antibody formulations than in surfactant-free formulations. Polysorbate 20 reduced particle formation when added at concentrations above or below the critical micelle concentration (CMC). The ability of polysorbate 20 to decrease particle generation in PFS corresponded with its ability to inhibit gelation of the adsorbed protein layer, which was assessed by measuring the interfacial diffusion of individual antibody molecules at the silicone oil-water interface using total internal reflectance fluorescence (TIRF) microscopy with single-molecule tracking. (C) 2015 Wiley Periodicals, Inc. and the American Pharmacists Association
查看更多>>摘要:Diarrhea caused by Shigella, Salmonella, and Yersinia is an important public health problem, but development of safe and effective vaccines against such diseases is challenging. A new antigen delivery platform called bacterium-like particles (BLPs) was explored as a means for delivering protective antigens from the type III secretion systems (T3SS) of these pathogens. BLPs are peptidoglycan skeletons derived from Lactococcus lactis that are safe for newborns and can carry multiple antigens. Hydrophobic T3SS translocator proteins were fused to a peptidoglycan anchor (PA) for BLP attachment. The proteins and protein-BLP complexes associated with BLPs were characterized and the resulting data used to create three-index empirical phase diagrams (EPDs). On the basis of these EPDs, IpaB (Shigella) and SipB (Salmonella) behave distinctly from YopB (Yersinia) under different environmental stresses. Adding the PA domain appears to enhance the stability of both the PA and translocator proteins, which was confirmed using differential scanning calorimetry, and although the particles dominated the spectroscopic signals in the protein-loaded BLPs, structural changes in the proteins were still detected. The protein-BLPs were most stable near neutral pH, but these proteins' hydrophobicity made them sensitive to environmental stresses. (C) 2015 Wiley Periodicals, Inc.
查看更多>>摘要:Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. (C) 2015 Wiley Periodicals, Inc.