首页期刊导航|Plant Physiology and Biochemistry
期刊信息/Journal information
Plant Physiology and Biochemistry
Gauthier-Villars
Plant Physiology and Biochemistry

Gauthier-Villars

0981-9428

Plant Physiology and Biochemistry/Journal Plant Physiology and BiochemistrySCIISTP
正式出版
收录年代

    Comprehensive analysis of the BES1 gene family and its expression under abiotic stress and hormone treatment in Populus trichocarpa

    Yang, JiaWu, YeLi, LuLi, Chenghao...
    13页
    查看更多>>摘要:The BRI1 EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT 1 (BES1/BZR1) plays a vital role in plant growth and development and stress responses, but there are few studies on poplar BES1 genes. In this study, we identified 14 BES1 genes in the Populus trichocarpa genome and analyzed the expression under hormone treatment and abiotic stress. The PtrBES1 genes were classified into seven subgroups (I-VII) through phylogenetic analysis. All the paralogous gene pairs were shown to be subjected to expansion by segment duplication and purification selection during the PtrBES1 family evolution. Promoter cis-element analysis showed that the PtrBES1 promoter contains stress related cis-elements including ABRE-motif, MBS and TC-rich elements. Quantitative real time reverse transcription PCR (RT-qPCR) analysis showed that the PtrBES1 genes were upregulated upon NaCl, Polyethylene glycol 6000 (PEG6000) stress as well as the major stress hormone abscisic acid (ABA) treatment. Under the three treatments, PtrBES1-7 showed high expression levels in leaves and roots. Physiological experiments showed that the overexpression PtrBES1-7 line could enhance tolerance to drought stress in P. trichocarpa by improving the ability to scavenge ROS (reactive oxygen species). This is specifically reflected in the fact that the overexpression line contains less ROS (O-2 & macr;& nbsp;and H2O2) and more antioxidant enzymes (1.42 times SOD and 1.5 times POD) than the control line. The preliminary results of this study provided a solid basis for the future functional studies of the BES1 gene family in P. trichocarpa.

    Exogenous gibberellin induced regreening through the regulation of chlorophyll and carotenoid metabolism in Valencia oranges

    Keawmanee, NichapatMa, GangZhang, LancuiYahata, Masaki...
    11页
    查看更多>>摘要:In the present study, we studied the effects of gibberellic acid (GA) on chlorophyll and carotenoid metabolites and related gene expression during the regreening process in Valencia orange fruits (Citrus sinensis Osbeck). During the regreening, fruits treated with GA turned green much faster than those of the control. Compared with untreated fruits, chlorophyll accumulation was induced and the content of carotenoids (beta-cryptoxanthin, alltrans-violaxanthin, and 9-cis-violaxanthin) was decreased by the GA treatment. Chlorophyll and carotenoid contents following GA treatment appeared to be highly regulated at the gene transcription level. Correspondingly, the up-regulation of chlorophyll biosynthesis genes (CitGGDR, CitCHL27, CitPORA, and CitCAO) and down regulation of degradation genes (CitCLH1, CitSGR, CitPPH, CitPAO, and CitRCCR) led to the increase of chlorophyll contents, and the down-regulation of carotenoid biosynthesis genes (CitPSY, CitPDS, CitZDS, CitLCYb2, and CitHYb) led to the decrease of carotenoid contents. These observations indicated that GA acted as a crucial regulator in the regreening process of citrus fruits.

    Monitoring the effects of chitosan on the profile of certain cell wall and membrane biomolecules in the leaves of Eruca vesicaria ssp. sativa through FT-IR spectroscopy

    Acemi, Arda
    8页
    查看更多>>摘要:The present study aimed to investigate the effects of chitosan at different molecular weights on the biomolecule profile of cell walls and membranes in Eruca vesicaria ssp. sativa leaves through FT-IR spectroscopy. It was demonstrated that the chitosan treatments could increase membrane destabilization through the elevation of lipid peroxidation and/or membrane fluidity. However, 10 kDa chitosan at 5 mg L-1 treatment was estimated to increase membrane lipid production. The 10 and 100 kDa chitosan treatments at 20 mg L-1 suggested higher protein contents than the other treatments. Chitosan's molecular weight and concentration influenced the relative ratios of functional groups in cell wall lignin. Ten kDa chitosan treatments triggered lignin production better than the other chitosan variants. The results showed that its molecular weight plays a role in the differ-entiation of chitosan's effects on the biomolecule pattern of E. vesicaria ssp. sativa leaves. However, none of the treatments induced significant changes in the peak positions, indicating that ex vitro chitosan treatment did not induce structural changes in the monitored biomolecules. The results also suggested that 10 kDa chitosan at 5 mg L-1 could be a better option than the other treatments tested, considering reducing the chemical use and cost in the cultivation process of the plant.

    Systematic analysis reveals O-methyltransferase gene family members involved in flavonoid biosynthesis in grape

    Lu, SuwenZhuge, YaxianHao, TianyiLiu, Zhongjie...
    13页
    查看更多>>摘要:O-methyltransferases (OMTs) are an important group of enzymes involved in the methylation of various secondary metabolites, including flavonoids. However, the features and functions of OMTs have not been comprehensively studied in grape (Vitis vinifera), a rich source of methylated flavonoids. Here, 47 OMT members were identified in grape genome. They were unevenly distributed on grape chromosomes and some genes were tandem duplicated, indicating the role of duplication processes in the expansion of this gene family. Based on the phylogenetic relationship, these OMTs were clustered into CCoAOMT and COMT subclades, which were further supported by the results of conserved motif and gene structure analysis. Correlation analysis revealed that three members (VvCCoAOMT1, VvCCoAOMT4, and VvCOMT1) were potentially involved in the synthesis of most methylated flavonoids in the berry skins. Expression profiling based on RNA-seq data and qRT-PCR experiments indicated that VvCCoAOMT1 and VvCCoAOMT4 had specific and high expression in berry skins, and responded to abscisic acid and high temperature treatments; and that VvCOMT1 expression was significantly induced during berry development and UVC treatment. Cis-regulatory element analysis suggested important roles of OMTs in growth, development, and defense against stresses. We further demonstrated the transcriptional regulation of VvCCoAOMT4 by VvMYBA1, a master regulator of grape berry anthocyanin, and verified the protein localization of VvCCoAOMT4 in membrane and nucleus. These findings facilitate a better understanding of the characteristics of OMT gene family, especially of the potential members involved in the formation of O-methylated flavonoids in grape.

    Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr

    Zhang, WenxiuZheng, LinlinBorjigin, TebuqinWang, Yingchun...
    13页
    查看更多>>摘要:Nitric oxide (NO) is an important signaling molecule involved in mediation of salt stress induced physiological responses in plants. In this study, we investigated the effect of NO on Nitraria tangutorum seedlings exposed to salt stress. Exogenous application of NO donor, sodium nitroprusside (SNP) increased fresh weight, shoot and root elongation and decreased electrolyte leakage and malondialdehyde (MDA) content in N. tangutorum seedlings under salt stress. Simultaneously, leaf senescence and root damage induced by salt stress were alleviated. SNP effectively increased NO content both in leaves and roots of plants under salt stress. Meanwhile, SNP activated the ascorbate-glutathione (AsA-GSH) cycle by increasing antioxidants contents, antioxidant enzymes activities, and related genes expression, thereby scavenging reactive oxygen species (ROS) and alleviating oxidative damage caused by salt stress. SNP alleviated salt stress induced ion toxicity by promoting Na+ efflux and ion transporter gene expression and reducing Na+ content and the Na+/K+ ratio. In addition, application of NO specific scavenger cPTIO and mammalian NO synthase inhibitor L-NAME sifnificantly aggravated stress damage in plant under salt stress. These results show the beneficial impacts of NO as a stress-signaling molecule that positively regulates defense response in N. tangutorum to salt stress.

    The NtNRAMP1 transporter is involved in cadmium and iron transport in tobacco (Nicotiana tabacum)

    Liu, WanhongHuo, ChunsongHe, LinshenJi, Xue...
    9页
    查看更多>>摘要:Plant natural resistance-associated macrophage protein (NRAMP) plays an important role in maintaining intracellular metal homeostasis and coping with environmental heavy metal stress. Until now, studies on NRAMP in tobacco have been limited. In this study, NtNRAMP1 was cloned from tobacco cultivar TN90, and the highest expression level was observed in the roots, which was strongly induced by Fe deficiency. Heterologously expressed NtNRAMP1 significantly increased the Cd sensitivity of the yeast Delta ycf1 mutant. Three overexpressed NtNRAMP1 lines were generated to reveal the biofunction of NtNRAMP1. In the soil pot experiments under natural conditions, the contents of Fe and total chlorophyll were increased in the leaves of transgenic tobacco compared with the WT. To reveal the characteristics of NtNRAMP1 in metal transport, transgenic plants were cultured in hydroponic solution with 50 mu M Cd and 200 mu M Fe. Compared with the WT, the Cd concentrations in transgenic plants increased by 1.26-2.02-fold in the roots. Interestingly, the Cd content in the shoots of transgenic plants was slightly reduced compared with that of the WT. Overexpression of NtNRAMP1 did not promote Fe uptake from the external environment into the roots but enhanced the transfer of Fe from the roots to shoots. Additionally, Fe overload in the leaves of transgenic tobacco resulted in increased levels of MDA and H2O2 while Fe toxicity may be relieved by POD. In conclusion, overexpression of NtNRAMP1 in tobacco could promote Cd uptake and Fe transport from the roots to shoots while disturbing Fe homeostasis in the leaves of transgenic tobacco.

    Subtoxic levels of some heavy metals cause differential root-shoot structure, morphology and auxins levels in Arabidopsis thaliana

    Sofo, AdrianoKhan, Nafees A.D'Ippolito, IlariaReyes, Francesco...
    8页
    查看更多>>摘要:Contamination of soil by heavy metals severely affects plant growth and causes soil pollution. While effects on plant growth have been investigated for metals taken individually or in groups, less is known about their comparative effects. In this study Arabidopsis thaliana seedlings were grown for 14 days in Petri dishes containing medium contaminated by six common heavy metals (Hg, Cd, Pb, Cu, Ni and Zn), at the minimum concentrations defined as toxic by the most recent EU legislation on contamination of agricultural soils. (a) Root structure and morphology, (b) metal composition and translocation, and (c) the levels of indole-3-acetic acid (IAA) and indole3-butyric acid (IBA) were analyzed. Metals accumulated more in roots than in shoots, with concentrations that differed by several orders of magnitude depending on the metal: Cd (ca. 700 x and ca. 450 x in roots and shoots, respectively), Hg (150 x , 80 x ), Ni (50 x , 20 x ), Cu (48 x , 20 x ), Zn (23 x , 6 x ), and Pb (9 x , 4 x ). Responses were significant for at least nine of the ten root parameters (with the exception of Hg), and five of the six shoot parameters (with the exception of Zn). Cu and Zn induced respectively the strongest responses in root hormonal (up to ca. 240% the control values for IBA, 190% for IAA) and structural parameters (up to 210% for main root length, 330% for total lateral root length, 220% for number of root tips, 600% for total root surface, and from 2.5 & nbsp;& nbsp;to 26.0 & nbsp;of root growth angle). Regarding the shoots, the largest changes occurred for shoot height (down to 60% for Ni), rosette diameter (down to 45% for Hg), leaf number (up to 230% for Zn) and IBA (up to 240% for Pb and Cu). A microscope analysis revealed that shape and conformation of root hairs were strongly inhibited after Cd exposure, and enhanced under Hg and Pb. The results could have positive applications such as for defining toxicity thresholds (in phytoremediation) and acceptable concentration levels (for policies) for some of the most common heavy metals in agricultural soils.

    Phospholipase Ds in plants: Their role in pathogenic and symbiotic interactions

    Pacheco, RonalQuinto, Carmen
    11页
    查看更多>>摘要:Phospholipase Ds (PLDs) are a heterogeneous group of enzymes that are widely distributed in organisms. These enzymes hydrolyze the structural phospholipids of the plasma membrane, releasing phosphatidic acid (PA), an important secondary messenger. Plant PLDs play essential roles in several biological processes, including growth and development, abiotic stress responses, and plant-microbe interactions. Although the roles of PLDs in plant pathogen interactions have been extensively studied, their roles in symbiotic relationships are not well understood. The establishment of the best-studied symbiotic interactions, those between legumes and rhizobia and between most plants and mycorrhizae, requires the regulation of several physiological, cellular, and molecular processes. The roles of PLDs in hormonal signaling, lipid metabolism, and cytoskeletal dynamics during rhizobial symbiosis were recently explored. However, to date, the roles of PLDs in mycorrhizal symbiosis have not been reported. Here, we present a critical review of the participation of PLDs in the interactions of plants with pathogens, nitrogen-fixing bacteria, and arbuscular mycorrhizal fungi. We describe how PLDs regulate rhizobial and mycorrhizal symbiosis by modulating reactive oxygen species levels, hormonal signaling, cytoskeletal rearrangements, and G-protein activity.

    Comparative transcriptome analysis reveals variations of bioactive constituents in Lonicera japonica flowers under salt stress

    Cai, ZhichenWang, ChengchengChen, CuihuaZou, Lisi...
    10页
    查看更多>>摘要:Lonicera japonica flowers (LJF) is a traditional Chinese medicine packed with phenols constituents and widely used in the treatments of various diseases throughout the world. However, there is still very little known on how LJF identifies and resists salt stress. Here in, we systematically investigated the effect of salt on the phenotypic, metabolite, and transcriptomic in LJF. During long term stress (35 days), 1055 differential expression genes (DEGs) involved in the biosynthesis of secondary metabolites were screened through transcriptome analysis, among which the candidate genes and pathways involved in phenols biosynthesis were highlighted; and performed by phylogenetic tree analysis and multiple nucleotide sequence alignment. Ninety compounds were identified and their relative levels were compared between the control and stressed groups based on the LC-MS analysis, Putative biosynthesis networks of phenolic acid and flavonoid were con-structed with structural DEGs. Strikingly, the expression patterns of structural DEGs were mostly consistent with the variations of phenols under salt stress. Notably, the upregulation of UDP-glycosyl transferases under salt stress indicated post-modification of glycosyl transferases may participate in downstream flavonoids synthesis. This study reveals the relationships of the gene regulation and the phenols biosynthesis in LJF under salt stress, paving the way for the use of gene specific expression to improve the yield of biocomponent.

    Systematic analysis of the Serine/Arginine-Rich Protein Splicing Factors (SRs) and focus on salt tolerance of PtSC27 in Populus trichocarpa

    Lan, YangangZhang, KaimeiHe, TingWang, Hao...
    13页
    查看更多>>摘要:Serine/Arginine-Rich Protein Splicing Factors (SRs) are indispensable splicing factors, which play significant roles in spliceosome assembly, splicing regulation and regulation of plant stress. However, a comprehensive analysis and function research of SRs in the woody plant is still lacking. In this report, we conducted the identification and comprehensive analysis of the 71 SRs in poplar and three other dicots, including basic characterization, phylogenetic, conserved motifs, gene duplication, promoter and splice isoform of these genes. Based on the publicly available transcriptome data, expression pattern of SRs in poplar under low temperature, high temperature, drought and salt stress were further analyzed. Subsequently, a key candidate gene PtSC27 that responded to salt stress was screened. More importantly, overexpression of PtSC27 increased plant survival rate under salt stress, and enhanced salt tolerance by regulating malondialdehyde (MDA) content, peroxidase (POD) and catalase (CAT) enzyme activities in transgenic plants. Meanwhile, overexpression of PtSC27 made transgenic plants insensitive to exogenous ABA and improved the expression of some ABA signal-related genes under salt stress. Overall, our studies lay a foundation for understanding the structure and function of SRs in the poplar and provide useful gene resources for breeding through genetic engineering.