首页期刊导航|Plant Physiology and Biochemistry
期刊信息/Journal information
Plant Physiology and Biochemistry
Gauthier-Villars
Plant Physiology and Biochemistry

Gauthier-Villars

0981-9428

Plant Physiology and Biochemistry/Journal Plant Physiology and BiochemistrySCIISTP
正式出版
收录年代

    Genome-wide identification and characterization of the Prunus persica ferredoxin gene family and its role in improving heat tolerance

    Meng, XiangguangWang, NingHe, HuajieWen, Binbin...
    12页
    查看更多>>摘要:Ferredoxin is involved in many biological processes, such as carbon fixation, nitrogen assimilation, chlorophyll metabolism, and fatty acid synthesis, and it plays a role in plant resistance to stress. However, the functions of Fds in peach during stress are unclear. In this study, 11 members of the peach Fd gene family were identified and divided into six groups (I- VI). We carried out bioinformatics analysis on these sequences, analyzed the physical and chemical properties of PpFd protein and the cis-elements in its promoter region, and predicted and compared the differences in gene structure and conserved protein motifs among groups. The results showed that the PpFd protein was highly conserved in plant species. In addition, overexpression of PpFd08 significantly increased the tolerance of transgenic tomato to high-temperature stress. The transcriptome analysis and qRT-PCR results of PpFd08 transgenic apple calli showed that PpFd08 might enhance heat resistance by modulating the expression of heat tolerance related genes. The results of this study provide a new understanding for the further study of the function of PpFd protein in peach and a candidate gene for improving the heat resistance of peach.

    Biochemical and molecular processes contributing to grain filling and yield in rice

    Shaw, Birendra PrasadSekhar, SudhanshuPanda, Binay BhushanSahu, Gyanasri...
    14页
    查看更多>>摘要:The increase in much required rice production through breeding programmes is on decline. The primary reason being poor filling of grains in the basal spikelets of the heavy and compact panicle rice developed. These spikelets are genetically competent to develop into well filled grains, but fail to do so because the carbohydrate assimilates available to them remain unutilized, reportedly due to poor activities of the starch biosynthesizing enzymes, high production of ethylene leading to enhanced synthesis of the downstream signaling component RSR1 protein that inhibits GBSS1 activity, poor endosperm cell division and endoreduplication of the endosperm nuclei, altered expression of the transcription factors influencing grain filling, enhanced expression and phosphorylation of 143-3 proteins, poor expression of the seed storage proteins, reduced synthesis of the hormones like cytokinins and IAA that promote grain filling, and altered expression of miRNAs preventing their normal role in grain filling. Since the basal spikelets are genetically competent to develop into well filled mature grains, biotechnological interventions in terms of spikelet-specific overexpression of the genes encoding enzymes involved in grain filling and/or knockdown/overexpression of the genes influencing the activities of the starch biosynthesizing enzymes, various cell cycle events and hormone biosynthesis could increase rice production by as much as 30%, much more than the set production target of 800 mmt. Application of these biotechnological interventions in the heavy and compact panicle cultivars producing grains of desired quality would also maintain the quality of the grains having demand in market besides increasing the rice production per se.

    Interactive effect of elevated CO2 and nitrogen dose reprograms grain ionome and associated gene expression in bread wheat

    Sathee, LekshmySingh, DalveerJha, Shailendra K.Chinnusamy, Viswanathan...
    10页
    查看更多>>摘要:Wheat crop grown under elevated CO2 (EC) often have a lowered grain nitrogen (N) and protein concentration along with an altered grain ionome. The mechanistic understanding on the impact of CO2 x N interactions on the grain ionome and the expression of genes regulating grain ionome is scarce in wheat. In the present study, the interactive effect of EC and N dosage on grain yield, grain protein, grain ionome, tissue nitrate, and the expression of genes contributing to grain ionome (TaNAM-B1 and TaYSL6) are described. Three bread wheat genotypes were evaluated under two CO2 levels (Ambient CO2 (AC) of 400 +/- 10 ppm and elevated CO2 (EC) of 700 +/- 10 ppm) and two N levels (Low (LN) and Optimum N (ON). In EC, wheat genotypes HD2967 and HI 1500 recorded a significant decrease in grain nitrate content, while leaf and stem nitrate showed a significant increase. BT. Schomburgk (BTS), showed a significant increase in unassimilated nitrate and a decline in grain N and grain protein under EC. There was a general decline of grain ionome (N, P, K, Ca, Fe) in EC, except for grain Na content. The expression of genes TaNAM-B1 and TaYSL6 associated with protein and micronutrient remobilization to grains during senescence were affected by both EC and N treatments. For instance, in flag leaves of BTS, the expression of TaNAM-B1 and TaYSL6 were lower in EC-LN compared to AC-LN. In maturing spikes, transcript abundance of TaNAM-B1 and TaYSL6 were lower in EC in BTS. The altered transcript abundance of TaYSL6 and TaNAM-B1 in source and sink supports the change in grain ionome and suggests an N dependent transcriptional reprogramming in EC.

    MdBAK1 overexpression in apple enhanced resistance to replant disease as well as to the causative pathogen Fusarium oxysporum

    Xu, ShaozhuoWang, XianpuXin, LiWang, Lishuang...
    14页
    查看更多>>摘要:Apple replant disease (ARD) is a complex syndrome caused by various biotic and abiotic stresses contained in replanted soil, leading to reduced plant growth and fruit yields and causing serious economic loss. Breeding disease-resistant varieties is an effective and practical method to control ARD. Effective plant defense depends in part on the plant immune responses induced by the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). BAK1 participates in the regulation of plant immunity as an important PRR-binding protein. In this study, MdBAK1 overexpression activated indeterminate immune responses in tissue-cultured apple plants. MdBAK1-overexpressing rooted apple plants exhibited enhanced resistance to ARD, as the inhibition of plant growth was significantly alleviated during the replanted soil treatment. In addition, MdBAK1-overexpressing apple plants showed abolished growth inhibition, wilting and root rot induced by Fusarium oxysporum, which is the main pathogen that causes ARD in China. MdBAK1 overexpression changed the microbial community structure in the rhizosphere soil, as reflected by the increase in bacterial content and the decrease in fungal content, and the root exudates of MdBAK1-overexpressing plants inhibited F. oxysporum spore germination compared with that of wild-type plants. Furthermore, the constitutive immunity and cell necrosis induced by the upregulation of MdBAK1 expression were involved in the inhibition of colonization and expansion of F. oxysporum in host plants. In short, MdBAK1 plays an important role in the regulation of apple resistance to ARD, suggesting that MdBAK1 may be a valuable gene for molecular breeding of ARD resistance.

    Responses of spring leaf phenological and functional traits of two urban tree species to air warming and/or elevated ozone

    Wang, YijingXu, ShengLi, BoChen, Wei...
    10页
    查看更多>>摘要:Climate warming and surface ozone (O-3) pollution are important global environmental issues today. However, the combined impacts of air warming and O-3 on phenology and its functional traits of urban trees are still poorly understood. Here, an experiment was performed to explore the variations of the spring phenological and functional traits in leaves of Populus alba 'Berolinensis' and Forsythia suspensa under ambient air (15.8 degrees C, 35.7 ppb), increased air temperature (IT, ambient air temperature + 2 degrees C, 17.9 degrees C), elevated O-3 (EO, ambient air O-3 concentrations + 40 ppb, 77.4 ppb), and their combined treatments (17.7 degrees C, 74.5 ppb). Our results showed that: IT advanced the beginning of leaf bud expansion phase of P. alba 'Berolinensis' and F. suspensa for 6 d and 5 d, respectively, increased leaf unfolding rate, leaf area and dry weight, and enhanced photosynthesis and anti-oxidative enzyme activities. EO delayed the beginning of leaf bud expansion phase of P. alba 'Berolinensis' for 5 d, decreased leaf area and biomass, and inhibited photosynthesis and caused oxidative damage of plant leaves. Compared to EO, the combined treatment advanced the spring phenophase, increased growth and induced the higher level of photosynthetic rate and antioxidative enzymes activities in plant leaves, which indicated that the positive effects of increased temperature (17.7 degrees C) alleviated the inhibition of growth and photosynthesis induced by ozone. Our findings can provide a theoretical reference for predicting the adaptation of functional traits of the two trees blossomed early under warming and O-3 pollution at spring phenological stage.

    Cell-wall structural carbohydrates reinforcements are part of the defence mechanisms of wheat against Russian wheat aphid (Diuraphis noxia) infestation

    Mafa, Mpho S.Rufetu, EllenAlexander, OrbettKemp, Gabre...
    11页
    查看更多>>摘要:Russian wheat aphid (RWA) is one of the most challenging pests for wheat crops globally. In South Africa, RWA has breached the strategy of introducing resistant genes into wheat plants, and so far, five RWA biotypes with different virulence levels have been documented in the field. Our study investigated how the cell wall plays a defensive role in Tugela-Dn1 (susceptible) and-Dn5 (resistant) cultivars infested with South African RWA-biotype 2 (RWASA2). The activities of enzymes related to defense responses were measured. The cell wall's holocellulose content, soluble lignin and physicochemical changes were quantified in the infested susceptible and resistant cultivars. Lastly, in vitro RWASA2 saliva-associated CWDEs activity was determined on cell wall-related model substrates. The results show that apoplastic peroxidase and beta-1,3-glucanase activities were significantly higher in Tugela-Dn5 relative to the control during the infestation periods. Peroxidase activity is associated with lignin cross-linking of the cell wall, which could deter RWASA2 feeding. The total phenolic and holo-cellulose contents were significantly induced in Tugela-Dn5 at 72 and 120 h post infestation (hpi). These findings were corroborated by the FTIR results, which showed that holocellulose and lignin regions of the resistant and susceptible wheat were affected by infestation at 72 hpi. However, Tugela-Dn5 reinforced cell wall content at 120 hpi. An increased crystallinity index in the resistant cultivar validated the cell wall reinforcement at 120 hpi, while Tugela-Dn1 delayed cell wall reinforcement. This study demonstrates that cell wall reinforcement's modification is part of defense responses against Russian wheat aphid infestation.

    Identification of genes and metabolic pathways involved in wounding-induced kiwifruit ripening

    Polychroniadou, ChrysanthiKaragiannis, EvangelosMichailidis, MichailAdamakis, Ioannis-Dimosthenis S....
    12页
    查看更多>>摘要:Fruit is constantly challenged by wounding events, inducing accelerated ripening and irreversible metabolic changes. However, cognate mechanisms that regulate this process are little known. To expand our knowledge of ripening metabolism induced by wounding, an artificial-wound global transcriptome investigation combined with metabolite profiling study was conducted in postharvest kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev. 'Hayward'). Wounding treatment promoted fruit ripening, as demonstrated by changes in fruit firmness, ethylene production and respiration activity determined periodically during a ripening period of 8 d at room temperature. Calcium imaging using fluorescent probe Fluo-3 AM revealed spatial dynamics of Ca(2+ )signaling in the wounding area following 8d ripening. Several sugars including fructose, glucose, and sucrose as well as organic acids such as citric, succinic and galacturonic acid were increased by wounding. Changes of various amino acids in wounded-treated fruit, especially 5-oxoproline and valine along with alternations of soluble alcohols, like myo-inositol were detected. Gene expression analysis of the wounded fruit showed increased expression of genes that are mainly involved in defense response (e.g., AdTLP.1-3, AdPP2C.1-2, AdMALD1), calcium ion binding (e.g., AdCbEFh, AdCLR, AdANX), TCA cycle (e.g., AdMDH.1, AdMDH.2, AdCS), sugars (e.g., AdSUSA.1, AdSPS4, AdABFr), secondary metabolism (e.g., AdPAL.1-3, AdCCR, AdHCT.1-2), lipid processing (e.g., AdGELP.1-4, AdGELP) and pectin degradation (e.g., AdPE.1-2, AdPAE.1-2, AdPG.1-2) as well as in ethylene (AdERF7, AdERF1B, AdACO.1-4) and auxin (AdICE, AdAEFc, AdASII) synthesis and perception. Moreover, genes related to aquaporins, such as AdAQP2, AdAQP4 and AdAQP7were down-regulated in fruit exposed to wounding. These results demonstrate multiple metabolic points of wounding regulatory control during kiwifruit ripening and provide insights into the molecular basis of wounding-mediated ripening.