首页期刊导航|Plant Physiology and Biochemistry
期刊信息/Journal information
Plant Physiology and Biochemistry
Gauthier-Villars
Plant Physiology and Biochemistry

Gauthier-Villars

0981-9428

Plant Physiology and Biochemistry/Journal Plant Physiology and BiochemistrySCIISTP
正式出版
收录年代

    Effects of ascorbic acid addition on the oxidative stress response of Oryza sativa L. plants to As(V) exposure

    Alvarez-Robles, M. J.Clemente, R.Ferrer, M. A.Calderon, A....
    10页
    查看更多>>摘要:Accumulation of noxious elements in the edible part of crops and its impact on food safety is of increasing concern. Rice is one of the major staple food crops worldwide, including arsenic (As)-polluted areas, in which dietary As exposure is becoming a widespread health threat. Plant chemical priming has been shown to be an effective strategy to enhance tolerance to environmental stresses, including metal(loid) exposure. The priming effect of ascorbic acid (AsA) was assessed in rice seedlings exposed to As(V) in a hydroponics experiment. AsA treatment (co-addition to the growing media concomitantly (t(0)) or 24 h in advance (t(24))) prevented an excessive accumulation of As in the mots (that decreased similar to 60%) and stimulated the activities of photosynthetic and antioxidant attributes (similar to 1.2-fold) in the aerial part of the plants. The increase in proline levels in both shoots (similar to 2.1-fold) and roots (similar to 2.4-fold) was found to be the most sensitive stress parameter, and was able to reflect the AsA-induced reduction of As toxic effects (concentrations back to Control levels, both simultaneously added or added as a pretreatment) in the aerial part of the plants. However, the phytotoxic effects related to As exposure were not fully prevented by priming with AsA, and further research is needed to find alternative priming approaches.

    Heterologous overexpression of PDH45 gene of pea provides tolerance against sheath blight disease and drought stress in rice

    Swain, Durga MadhabJha, GopaljeeTuteja, NarendraSahoo, Ranjan Kumar...
    10页
    查看更多>>摘要:Biotic and abiotic stress tolerant crops are required for sustainable agriculture as well as ensuring global food security. In a previous study, we have reported that heterologous overexpression of pea DNA helicase (PDH45), a DEAD-box family member protein, provides salinity stress tolerance in rice. The improved management of photosynthetic machinery and scavenging of reactive oxygen species (ROS) are associated with PDH45 mediated salinity stress tolerance. However, the role of PDH45 in biotic and other abiotic stress (drought) tolerance remains unexplored. In the present study, we have generated marker-free transgenic IR64 rice lines that overexpress PDH45 under the CaMV35S promoter. The transgenic rice lines exhibited a significant level of tolerance against sheath blight disease, caused by Rhizoctonia solani, a polyphagous necrotrophic fungal pathogen. The defense as well as antioxidant responsive marker genes were significantly upregulated in the PDH45 overexpressing (OE) rice lines, upon pathogen infection. Moreover, the OE lines exhibited tolerance to drought stress and various antioxidant as well as drought responsive marker genes were significantly upregulated in them, upon drought stress. Overall, the current study emphasizes that heterologous overexpression of PDH45 provides abiotic as well as biotic stress tolerance in rice. Tolerance against drought as well as sheath blight disease by overexpression of a single gene (PDH45) signifies the practical implication of the present study. Moreover, considering the conserved nature of the gene in different plant species, we anticipate that PDH45 can be gainfully deployed to impart tolerance against multiple stresses in agriculturally important crops.

    The long-term persistence of transgenic volunteers in wild mustard and rice populations

    Wang, XinyuYao, ZhiHuang, HaiLiang, Yuyong...
    5页
    查看更多>>摘要:The undesired presence of GM plants outside of cultivation is one of main concerns for the ecological risk assessment and regulation of GM plants, and how long transgenic volunteers can persist in the nature remains unknown. We conducted two long-term coexistence experiments of Bt-transgenic insect-resistant crops in pop-ulations of their wild relatives, using Bt-transgenic oilseed rape (Brassica napus) in wild mustard (B. juncea) populations from 2012 to 2019, and Bt-transgenic rice (Oryza sativa) in wild rice (O. rufipogon and O. minuta) populations from 2013 to 2019. Transgenic oilseed rape volunteers survived only in the 2012 winter, because it is a spring variety and not be resistant to cold climate and competition from weeds. Transgenic rice was not survived because of its low competitive ability compared to wild rice, but survived five years in one population of wild rice O. minuta who could not tolerant to cold temperature. Our results indicated that transgenic volunteers can persist in the wild populations under natural conditions, but the fate of transgenic volunteers in the nature depends on whether the growth environment is favorable, and they could not disperse over its niche or "tolerance zone".

    Nutrient allocation strategies of four conifers from semiarid to extremely arid environments

    Liu, JianguoGou, XiaohuaWang, FangZhang, Fen...
    9页
    查看更多>>摘要:Although the contents of limiting elements in plants, such as nitrogen (N) and phosphorus (P), have been widely studied from subtropical to humid-temperate zones, the strategies used by coniferous species to allocation N and P in arid and semiarid forests remain unclear. In this study, samples of 545 leaves, 194 twigs, and 78 fine roots were collected from four coniferous species (Pinus tabuliformis, Picea wilsonii, Juniperus przewalskii, and Picea crassifolia) of three genera (Pinus, Picea, and Juniperus) in the northeastern Tibetan Plateau, and the contents of C, N, and P were analyzed. Two key parameters, namely the allometric exponent and coefficient of variation, were calculated to illustrate the relative investment of plants to N and P uptake and plasticity (variation of N and P), respectively. The contents of N and P and the N:P ratios were the highest in leaves, but their plasticity was the lowest. This confirmed the hypothesis that the leaves of coniferous species have a high content of limiting nu-trients and homeostasis. At the regional level, the allometric exponent of N and P in leaves was 0.68, 0.74 in twigs, and 0.78 in fine roots, which is consistent with the results on a global scale. Thus, this invariant allometric relationship suggests the existence of an important mechanism that constrains the allocation of plant nutrients across broad environmental gradients. However, the allocation strategies for N and P shifted with the species, climate, and soil nutrients. Namely: their preferred nutrient uptake was P when the trees had a better nutritional status (semiarid environments, mean annual precipitations (MAP) > 300 mm), but the investment of N was strengthened when the habitat conditions become more severe (extremely arid environments, MAP <100 mm). Thus, our results can provide a novel perspective to understand the strategies of plant nutrient uptake in arid and semiarid forests.

    Classification of various nutrient deficiencies in tomato plants through electrophysiological signal decomposition and sample space reduction

    Sai, KavyaSood, NeetuSaini, Indu
    13页
    查看更多>>摘要:Plants leave testimonies of undergoing physical state by depicting distinct variations in their electrophysiological data. Adequate nutrition of plants signifies their role in the growth and a plentiful harvest. Plant signal data carries enough information to detect and analyse nutrient deficiency. Classification of nutrient deficiencies through signal decomposition and bilevel measurements has not been reported earlier. The proposed work ex-plores tomato plants in four-time cycles (Early Morning, Morning, After Noon, Night) of macronutrients Calcium (Ca), Nitrogen (N) and micronutrients Manganese (Mn), Iron (Fe). Using the Empirical Mode Decomposition method (EMD), signals are decomposed into Intrinsic Mode Functions (IMF) in 10-levels. Further, Intrinsic mode functions are grouped into two clusters to extract descriptive data statistics and bi-level measurements. Then a novel sample selection method is proposed to achieve a better classification rate by reducing sample space. A binary classification model is built to train and test 15 features individually using discriminant analysis and naive-Bayes classifier variants. The reported results achieved a classification rate up to 98% after 5-fold cross -validation. Attained findings endorse novel pathways for detection and classification of nutrient deficiencies in the early stages, consequently promoting prevention and treatment approaches earliest to the appearance of symptoms, also helping to enhance plant growth.

    Potassium in plant physiological adaptation to abiotic stresses

    Rahman, Md. MezanurGhosh, Totan KumarMostofa, Mohammad GolamKabir, Ahmad Humayan...
    11页
    查看更多>>摘要:Potassium (K) is an integral part of plant nutrition, playing essential roles in plant growth and development. Despite its abundance in soils, the limitedly available form of K ion (K+) for plant uptake is a critical factor for agricultural production. Plants have evolved complex transport systems to maintain appropriate K+ levels in tissues under changing environmental conditions. Adequate stimulation and coordinated actions of multiple K+channels and K+-transporters are required for nutrient homeostasis, reproductive growth, cellular signaling and stress adaptation responses in plants. Various contemporary studies revealed that K+-homeostasis plays a substantial role in plant responses and tolerance to abiotic stresses. The beneficial effects of K+ in plant responses to abiotic stresses include its roles in physiological and biochemical mechanisms involved in photosynthesis, osmoprotection, stomatal regulation, water-nutrient absorption, nutrient translocation and enzyme activation. Over the last decade, we have seen considerable breakthroughs in K research, owing to the advances in omics technologies. In this aspect, omics investigations (e.g., transcriptomics, metabolomics, and proteomics) in systems biology manner have broadened our understanding of how K+ signals are perceived, conveyed, and integrated for improving plant physiological resilience to abiotic stresses. Here, we update on how K+-uptake and K+-distribution are regulated under various types of abiotic stress. We discuss the effects of K+ on several physiological functions and the interaction of K+ with other nutrients to improve plant potential against abiotic stress-induced adverse consequences. Understanding of how K+ orchestrates physiological mechanisms and contributes to abiotic stress tolerance in plants is essential for practicing sustainable agriculture amidst the climate crisis in global agriculture.

    Effects of light quality, photoperiod, CO2 concentration, and air temperature on chlorogenic acid and rutin accumulation in young lettuce plants br

    Fukuda, Mirai Endo NaoyaYoshida, HideoKusano, Miyako
    9页
    查看更多>>摘要:Environmental stimuli modulate plant metabolite accumulation, facilitating adaptation to stressful conditions. In this study, the effects of blue and red light, photoperiod, CO2 concentration, and air temperature on the chlorogenic acid (CGA) and rutin contents of lettuce (Lactuca sativa L.) were evaluated. Under continuous blue light and a high CO2 concentration (1000 ppm), the CGA level increased. The increased expression of phenylalanine ammonia-lyase (PAL) and activity of its product were correlated with high expression of cinnamate 4hydroxylase (C4H) and coumarate 3-hydroxylase (C3H). Furthermore, changes in PAL activity altered the CGA content in lettuce exposed to the three environmental factors, blue light, continuous lighting and high CO2 concentration. In addition, the expression levels of genes related to flavonoid biosynthesis increased in accordance with the promotion of CGA accumulation by the environmental factors. Under continuous blue light, 400 ppm CO2 promoted rutin accumulation to a greater degree compared to 1000 ppm CO2, by downregulating DFR expression. Low air temperature induced CGA accumulation in lettuce grown under continuous blue light and 1000 ppm CO2. Therefore, light quality, photoperiod, CO2 concentration, and air temperature exert synergistic effects on the CGA and rutin contents of lettuce by modulating activity in the corresponding biosynthesis pathways.

    PavGA2ox-2L inhibits the plant growth and development interacting with PavDWARF in sweet cherry (Prunus avium L.)

    Liu, XunjuWang, JiyuanSabir, Irfan AliSun, Wanxia...
    11页
    查看更多>>摘要:Dwarf dense planting is helpful to improve the yield and quality of sweet cherry, which has enormous market demand. GA2oxs (GA oxidases) affect plant height, dormancy release, flower development, and seed germination by participating in the metabolic regulation and signal transduction of GA (Gibberellin). However, the research on GA2ox in sweet cherry is little and worthy of further investigation. Therefore, we identified the PavGA2ox-2L gene from sweet cherry, close to PynGA2ox-2 from Prunus yedoensis var. Nudiflora. The phylogenetic analysis indicated conserved functions with these evolutionarily closer GA2ox subfamily genes. Subcellular localization forecast analysis indicated that PavGA2ox-2L was localized in the nucleus or cytoplasm. The expression levels of PavGA2ox-2L were higher in winter, indicating that PavGA2ox-2L promoted maintained flower bud dormancy. The expression levels of PavGA2ox-2L were significantly increased after GA(4+7) treatment while decreased after GR24 (a synthetic analog of SLs (Strigolactones)) or TIS108 (a triazole-type SL-biosynthesis inhibitor) treatments. Over-expression of PavGA2ox-2L resulted in decreased plant height, delayed flowering time, and low seed germination rate in Arabidopsis thaliana. Furthermore, the interaction between PavGA2ox-2L and PavDWARF was verified by Y2H and BiFC assays. In the current investigation, PavGA2ox-2L functions as a GA metabolic gene that promotes dwarf dense planting, delays flowering time, and inhibits seed germination. In addition, it also participates in regulating plant growth and development through the interaction with the critical negative regulator PavDWARP of Gibberellin. These results will help us better explore the molecular mechanism of GA2ox-mediated dwarf and late-maturing varieties for fruit trees.

    Genome-wide analysis of the serine carboxypeptidase-like (SCPL) proteins in Brassica napus L.

    Liu, YilinCe, FuquanTang, HuanYang, Lei...
    12页
    查看更多>>摘要:The serine carboxypeptidase-like protein (SCPL) family plays a key part in plant growth, development and stress responses. However, the serine carboxypeptidase-like (SCPL) proteins in Brassica napus L. (B. napus) have not been reported yet. Here, we identified a total of 117 putative SCPL genes in B. napus, which were unevenly distributed on all 19 chromosomes and were divided into three groups (carboxypeptidase I to III) according to their phylogenetic relationships. Synteny and duplication analysis revealed that the SCPL gene family of B. napus was amplified during allopolyploidization, in which the whole genome triplication and dispersed duplication played critical roles. After the separation of Brassica and Arabidopsis lineages, orthologous gene analysis showed that many SCPL genes were lost during the evolutionary process in B. rapa, B. oleracea and B. napus. Subse-quently, the analyses of the gene structure, conserved motifs, cis-element and expression patterns showed that the members in the same group were highly conserved. Furthermore, candidate gene based association study suggested the role of BnSCPL52 in controlling seed number per silique, seed weight and silique length and a CAPS marker was developed to distinguish different haplotypes. Our results provide an overview of rapeseed SCPL genes that enable us for further functional research and benefit the marker-assisted breeding in Brassica napus.

    The chromosome-scale genome provides insights into pigmentation in Acer rubrum

    Lu, XiaoyuChen, ZhuLiao, BuyanHan, Guomin...
    12页
    查看更多>>摘要:Acer rubrum L. is one of the most prevalent ornamental species of the genus Acer, due to its straight and tall stems and beautiful leaf colors. For this study, the Oxford Nanopore platform and Hi-C technology were employed to obtain a chromosome-scale genome for A. rubrum. The genome size of A. rubrum was 1.69 Gb with an N50 of 549.44 Kb, and a total of 39 pseudochromosomes were generated with a 99.61% genome. The A. rubrum genome was predicted to have 64644 genes, of which 97.34% were functionally annotated. Genome annotation identified 67.14% as the transposable element (TE) repeat sequence, with long terminal repeats (LTR) being the richest (55.68%). Genome evolution analysis indicated that A. rubrum diverged from A. yangbiense -6.34 million years ago. We identified 13 genes related to pigment synthesis in A. rubrum leaves, where the expressions of four ArF3 ' H genes were consistent with the synthesis of cyanidin (a key pigment) in red leaves. Correlation analysis verified that the pigmentation of A. rubrum leaves was under the coordinated regulation of non-structural carbohydrates and hormones. The genomic sequence of A. rubrum will facilitate genomic breeding research for this species, while providing the valuable utilization of Aceraceae resources.