首页期刊导航|Spectrochimica acta
期刊信息/Journal information
Spectrochimica acta
Pergamon
Spectrochimica acta

Pergamon

1386-1425

Spectrochimica acta/Journal Spectrochimica acta
正式出版
收录年代

    Signal amplification of SiO2 nanoparticle loaded horseradish peroxidase for colorimetric detection of lead ions in water

    Duan, NuoLi, ChangxinSong, MingqianWang, Zhouping...
    7页
    查看更多>>摘要:In this work, we developed an aptamer-based optical assay for the analysis of Pb2+, a hazardous heavy metal that may be present in the food chain and harmful to human health. An aptamer targeted against Pb2+ was immobilized onto the microplate as the capture probe. SiO2 nanoparticles (NPs) were synthesized and used as carriers of the signaling horseradish peroxidase (HRP) to achieve amplification of the optical signal. Complementary DNA (cDNA) of the aptamer was also linked to the above mentioned SiO2 nanoparticle (NPs) as the signal probe. The aptamers were found to be able to capture Pb2+, and the unbound aptamers were subsequently hybridized with cDNA-HRP-SiO2 conjugates. As a result, the addition of TMB-H2O2 promoted the formation of blue products in the catalytic system. The assay adopting SiO2 NPs as an enhancer resulted in higher sensitivity with an LOD of 2.5 nM compared to normal procedures. The feasibility of the aptamer-based colorimetric assay was verified by successful detection of Pb2+ in water samples with recoveries in the range of 97.4-103.52%. (C) 2021 Elsevier B.V. All rights reserved.

    Multi-species hydrocarbon measurement using TDLAS with a wide scanning range DFG laser

    Wang, QimingWang, ZhenzhenKamimoto, TakahiroDeguchi, Yoshihiro...
    12页
    查看更多>>摘要:Tunable diode laser absorption spectroscopy (TDLAS) is a widely used diagnostic technique due to its high sensitivity, fast response, low cost, and other merits. Hydrocarbon detection is a field of great interest in the application of tunable diode lasers as hydrocarbons are fundamental molecules in many industrial processes. Many tunable diode lasers are only suitable for single species detection due to the short scanning range and in real situations. However, different hydrocarbon species tend to exist simultaneously. Here we present a laser system based on the difference-frequency generation (DFG) method for simultaneous hydrocarbon mixtures detection. The direct absorption spectra of different hydrocarbons covering various groups (e.g., alkane, olefin, and aromatic) were measured. The measurements of the concentration dependence of absorbance for each molecule were carried out. The R-2 values were larger than 0.997, which demonstrated the system can measure hydrocarbons covering different molecular classes accurately. The mixture components were identified using the independent component analysis and quantitative analysis was performed using the classical least-squares method. Future studies will focus on the validation of the system in actual processes. (C) 2021 Elsevier B.V. All rights reserved.

    Novel lysosome-targeted fluorescent molecular rotors based on a cyanine-like modular system and their application in living cells

    Lei, ZhaoxiaWang, ZhimingBian, YayeHe, Song...
    8页
    查看更多>>摘要:Two novel fluorescence molecular rotors DpIn and NaIn were designed and synthesized involving of indolium units linked with meta-diphenol or ortha-naphthalenediol moiety, respectively. They underwent intramolecular charge transfer to form a cyanine-like modular system at a physiological pH. In glycerol aqueous solutions, the probe DpIn exhibited NIR strong emission (3-fold) at ca. 700 nm, while the probe NaIn displayed a turn-on emission (8-fold) with a larger Stokes shift ((sic)lambda approximate to 97 nm). The HeLa cell imaging experiments indicated probe DpIn and NaIn both exhibited excellent selectivity for staining intracellular lysosomes instead of mitochondria. H-1 NMR spectra revealed that more electrons were accumulated around benzene ring of indolium groups, which could be the evidence for its basic character leading to the lysosomes targeted staining. Furthermore, the probe NaIn proved to be an ideal lysosome-targeting tracer for monitor the changes of viscosity caused by stimuli in living cells. (C) 2021 Elsevier B.V. All rights reserved.

    Raman spectroscopy of healthy, injured and amniotic membrane treated rat spinal cords

    Coutinho, Elisabeth Salmagi TeixeiraNeto, Lazaro Pinto MedeirosBhattacharjee, TanmoyArisawa, Emilia Angela Lo Schiavo...
    4页
    查看更多>>摘要:Spinal cord injury is a significant public health issue with high psychological and financial costs to both the family and the society. Effective treatment strategies are hence of immense value. Several reports have suggested application of amniotic membrane for treating injuries, and there is evidence that it may be used to treat spinal injuries. In this animal model study, we explore biochemical changes in amniotic membrane treated injured spinal cord with respect to untreated injured and uninjured spinal cord using Raman spectroscopy. Multivariate statistical analysis is able to classify control, untreated, and treated with 92%, 87%, and 80% efficiency, respectively; suggesting unique biochemical changes in each group. Such studies may lead to development of minimally invasive methodologies for spinal cord injury treatment monitoring. (c) 2021 Elsevier B.V. All rights reserved.

    Laser induced degradation of bacterial spores during micro-Raman spectroscopy

    Malyshev, DmitryOberg, RasmusDahlberg, TobiasWiklund, Krister...
    8页
    查看更多>>摘要:Micro-Raman spectroscopy combined with optical tweezers is a powerful method to analyze how the biochemical composition and molecular structures of individual biological objects change with time. In this work we investigate laser induced effects in the trapped object. Bacillus thuringiensis spores, which are robust organisms known for their resilience to light, heat, and chemicals are used for this study. We trap spores and monitor the Raman peak from CaDPA (calcium dipicolinic acid), which is a chemical protecting the spore core. We see a correlation between the amount of laser power used in the trap and the release of CaDPA from the spore. At a laser power of 5 mW, the CaDPA from spores in water suspension remain intact over the 90 min experiment, however, at higher laser powers an induced effect could be observed. SEM images of laser exposed spores (after loss of CaDPA Raman peak was confirmed) show a notable alteration of the spores' structure. Our Raman data indicates that the median dose exposure to lose the CaDPA peak was-60 J at 808 nm. For decontaminated/deactivated spores, i.e., treated in sodium hypochlorite or peracetic acid solutions, the sensitivity on laser power is even more pronounced and different behavior could be observed on spores treated by the two chemicals. Importantly, the observed effect is most likely photochemical since the increase of the spore temperature is in the order of 0.1 K as suggested by our numerical multiphysics model. Our results show that care must be taken when using micro-Raman spectroscopy on biological objects since photoinduced effects may substantially affect the results. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

    A new approach to removing interference of moisture from FTIR spectrum

    Zhang, XiaohuaHe, AnqiGuo, RanZhao, Ying...
    10页
    查看更多>>摘要:An approach is developed to remove the interference of moisture from FTIR spectra. The interference arises from two aspects: the fluctuation on the temperature of the HeNe laser and the fluctuation on the transient concentration of moisture in the light - path of an FTIR spectrometer. The temperature fluctuation on the HeNe laser produces a systematic spectral shift between single-beam sample and background spectra, which often makes spectral subtraction method invalid in removing the interference of moisture. Herein, the Carbo similarity metric (the CAB value) is used to reflect the subtle spectral shift. A database of single-beam background spectra is established based on the concept of big-data and the pigeon-hole theory. The spectral shift is corrected by selecting suitable single-beam background spectra from the database to match with the given single-beam sample spectrum according to the CAB value. The interference caused by the fluctuation of the transient concentration of moisture is removed using a comprehensive 2D-COS method. We apply the approach on two polymeric samples to retrieve high-quality spectra and reliable second derivative spectra without the interference of moisture. The present work provides a new opportunity of obtaining the reliable second derivative spectra in the spectral region masked by moisture. (c) 2021 Elsevier B.V. All rights reserved.

    Terahertz spectra and weak intermolecular interactions of nucleosides or nucleoside drugs

    Wang, FangSun, XiaolinZan, JiananLi, Mingshi...
    13页
    查看更多>>摘要:In this paper, terahertz (THz) spectra of four DNA nucleosides (Adenosine, Thymidine, Cytidine and Guanosine) and two nucleoside derivatives (Ribavirin and Entecavir, first time reported) in the solid phase were studied experimentally by Fourier Transform Infrared Spectroscopy (FTIR) in the frequency of 1-10 THz. The lattice energy, geometric structure, vibration spectrum of them were analyzed theoretically by the generalized energy-based fragmentation approach under periodic boundary conditions (denoted as PBC-GEBF) and the density functional theory (DFT). The intra-and inter-molecular weak interactions corresponding to the vibrational modes of the crystal, polymer and monomer were obtained, with the help of the potential energy distribution (PED) and reduced density gradient (RDG) methods. It was found that the sum of electronic and thermal free energies increased from the monomer to polymer, and from the polymer to crystal. For example, the inter-molecular interaction energy from the monomer to dimer of adenosine increased 6.969 kcal/mol, and that from the dimer to crystal (the periodic boundary conditions were considered) increased 666.792 kcal/mol. Therefore, only the crystal structure constrained the periodic boundary conditions could well describe the experimental results, although the former scholars chose the monomer or polymer as the initial configuration due to the limitation of computing resources and methods. In THz band, the vibrational modes were generally originated from the collective vibration (more than 99% of them were vibration, only less than 1% of them were rotation and translation) of all molecules involved, which could reflect the molecular structure and spatial distribution of different substances. In order to accurately identify the spectra, we studied the location, type and contribution of all weak interactions, and found that the strong characteristic peaks corresponding to the strong hydrogen bonds came from inter-molecular, while the weak hydrogen bonds mainly originated from intraand inter-molecular, the out-of-plane bending made the largest contribution, accounting for more than 90%. Furthermore, taking guanine, guanosine and two guanosine derivatives (Ribavirin and Entecavir) as examples, the differences of weak interaction among them caused by different molecular configuration, arrangement and substituent position were studied, and the fundamental reason of THz spectrum change was found. This research can lay a foundation for crystal engineering, supramolecular chemistry, molecular recognition and self-assembly, protein-ligand interaction, etc. (c) 2021 Elsevier B.V. All rights reserved.

    A molecularly imprinted polymerized high internal phase emulsion adsorbent for sensitive chemiluminescence determination of clopidogrel

    Mokhtari, AliBarati, MozhdehKarimian, HosseinKeyvanfard, Mohsen...
    11页
    查看更多>>摘要:A molecularly imprinted polymerized high internal phase emulsion (MIP-polyHIPE) adsorbent was used for selective separating and preconcentrating the anti-plaque drug, clopidogrel. For the first time in this study, chemiluminescence (CL) methods were evaluated for the determination of clopidogrel. The synthesis of adsorbents by the emulsion templating method showed that the sensitivity of the method can be increased up to 42 times. The determination of clopidogrel was evaluated by Ru(phen)(3)(2+)- Cerium (IV), KMnO4-H2SO4, KMnO4-H2SO4-Na2SO3, and luminol-H2O2 CL systems. According to the results, only the Ru(phen)(3)(2+)-Cerium (IV) CL system showed a reasonable sensitivity for clopidogrel. Using MIP-polyHIPE adsorbent, the linear range, the limit of detection, and relative standard deviation for clopidogrel in this system were respectively 1.0 x 10(-9)-8.0 x 10(-8) mol L-1, 3.0 x 10(-10) mol L-1, and 6.3% (n = 4, 1.0 x 10(-8)). The proposed method was employed for determining clopidogrel in pharma-ceuticals and blood serum samples. The results showed the good sensitivity and accuracy of the proposed method. (C) 2021 Elsevier B.V. All rights reserved.

    Solvent polarity dependent ESIPT behavior for the novel flavonoid-based solvatofluorochromic chemosensors

    Meng, XuanSong, LiyingHan, HaiyunZhao, Jinfeng...
    9页
    查看更多>>摘要:In this work, we explore the excited-state intramolecular proton transfer (ESIPT) mechanisms and rela -tive solvent effects for three novel 3-hydroxylflavone derivatives (i.e., HOF, SHOF, and NSHOF) in acetoni-trile, dichloromethane, and toluene solvents. Through calculations, we optimize the structures of HOF, SHOF, and NSHOF. Through the analysis of a series of structural parameters related to hydrogen bonding interactions, it could be found that the hydrogen bonds of the three derivatives are all enhanced in the S-1 state, and more importantly, the excited-state hydrogen bonds of HOF are stronger than those of SHOF and NSHOF. In order to explore the effects of solvent polarity, we analyze the core-valence bifurcation (CVB) index, infrared (IR) vibration spectrum, and the potential energy curves. We find that for HOF, SHOF, and NSHOF, the strength of the excited-state hydrogen bonds increases as the solvent polarity decreases. The solvent polarity dependent ESIPT mechanisms pave the way for further designing novel flavonoid-based solvatofluorochromic probes in future. (C) 2021 Elsevier B.V. All rights reserved.

    Formation of the octadecylphosphonic acid layer on the surface of Ti6Al4V ELI titanium alloy and analysis using Raman spectroscopy

    Szczuka, JoannaSandomierski, MariuszBuchwald, Tomasz
    13页
    查看更多>>摘要:Increasing life expectancy, a sedentary lifestyle and bone diseases all contribute to an increasing demand for endoprostheses. Currently, the service life of a knee prosthesis is 10-17 years on average, depending on the patient's weight and activity. In addition, the most common reasons for revision operations after implantation are prosthesis loosening and infections resulting from the lack of implant-bone connection. That is why it is so important to constantly search for new materials or improve the current methods of obtaining biomaterials and modifying their surfaces. The main goal of the research is to improve the bonding of hydroxyapatite (HA) on the surface of titanium alloy, which is used in the construction of endoprostheses. At this stage of the research, octadecylphosphonic acid (ODPA) deposited on the surface of the Ti6Al4V ELI alloy was analyzed. To verify the layer, HA attachment (the precipitation process) was first checked, and then the modified plates were immersed in a synthetic body fluid (SBF) to simulate the conditions in the living organism. At each stage of the study, the samples were analyzed using: SEM, EDS and Raman spectroscopy spectral measurements and surface mapping were performed. The study were supplemented by the measurements of the contact angle checking the wettability of the surface, which is important for the analysis of biomaterials and surface roughness measurements by confocal microscopy. The results shows that ODPA it increases the amount of precipitation of HA when dipped in SBF. Another interesting finding is that the addition of ODPA to the annealed titanium alloy restricts the precipitation of HA on its surface. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).