查看更多>>摘要:Precise identification and sensing of organic and inorganic molecular systems are key factors in several applications in present industrial and scientific domains. While high energy modes, due to electronic interactions, are mostly impervious to the initial thermodynamic or chemical conditions, the low energy modes are sensitive to such alterations which makes them suitable for quality control purpose with sensitive spectral identification methods. Here we report for the first time, several low frequency peaks of specific nitrogen-based compounds and their derivatives, using the dual spectroscopic approach of Terahertz Time-Domain Spectroscopy (THz-TDS) and THz Raman Spectroscopy (THz-RS). Two different isomeric molecular systems have also been investigated to assess both the selectivity and specificity of low energy modes in their identification and spectral correlation in terms of molecular interactions. This information of low frequency modes can be utilized readily by pharmaceutical and agri-food industries, chemical engineering and crystal growth communities in identification, detection, quality control and industrial waste management. (C) 2022 Elsevier B.V. All rights reserved.
查看更多>>摘要:A simple and highly selective fluorescence biosensor has been exploited for p-nitrophenol (p-NP) and alkaline phosphatase (ALP) activity detection based on the glutathione-stabilized copper nanoclusters (GSH-CuNCs) mediated-inner filter effect (IFE). The GSH-CuNCs were prepared by employing GSH as stabilizer and ascorbic acid (AA) as reductant. The obtained GSH-CuNCs exhibited a strong blue fluorescence emission at 420 nm with an excitation wavelength of 365 nm, which overlapped largely with the absorption spectra of p-nitrophenol (p-NP). Therefore, the luminescence of GSH-CuNCs could be quenched by p-NP through inner filter effect. In addition, ALP catalyzed the substrate p-nitrophenyl phosphate (p-NPP) to form p-nitrophenol (p-NP), which also leading to the fluorescence quenching of GSH-CuNCs. The fluorescent strategy was realized for the sensitive determination of p-NP and ALP activity with the promising limit of detection of 20 nM (for p-NP) and 0.003 mU.mL(-1) (for ALP). Furthermore, the method could be applied to detect the p-NP content in river water samples and ALP activity in human serum samples. (C) 2022 Elsevier B.V. All rights reserved.
查看更多>>摘要:Edible fungus is a large fungus with edible and medicinal value. Rapid detection of mycelium phenotypic characteristics is of great significance for edible fungus breeding and intelligent cultivation. Traditional method based on experienced observation easily led to make mistakes on distinguishing the growth stages, which impacted on the yield and quality of edible fungus. Therefore, in view of the lack of accurate and efficient detection technology during the growth stages of Pleurotus eryngii mycelium, a rapid detection method of Pleurotus eryngii mycelium at different growth stages is proposed based on the characteristics of near-infrared spectroscopy. First, the spectral data of mycelium of Pleurotus eryngii at six different growth stages were scanned. Second, the multivariate scattering correction method (MSC) was used to pre-process the raw spectral data, and then the competitive adaptive reweighted sampling algorithm (CARS) was adopted to detect the characteristic wave number of the effective variables for Pleurotus eryngii mycelium. In addition, the mathematical model between the mycelium of Pleurotus eryngii and the characteristic wave number of near-infrared spectrum was established by using feed forward neural network (BP). Finally, and the coding vector output by the network was used to detect to the growth stages. The results showed that the BP neural network structure of MSC-CARS-BP detection model was 86-85-85-95-6, and the accuracy of identifying different growth stages of Pleurotus eryngii mycelium was 99.67%. The research results could provide a new idea and technical support for the rapid detection of Pleurotus eryngii mycelium at different growth stages. (C) 2022 Elsevier B.V. All rights reserved.
查看更多>>摘要:Moisture content is an important indicator that affects green tea processing. In this study, taking Chuyeqi tea as the research object, a quantitative prediction model of the changes in moisture content during the processing of green tea was constructed based on machine vision and near-infrared spectroscopy technology. First, collect the spectrum and image information in the process of spreading, fixation, first-drying, carding, and second-drying. The competitive adaptive reweighted sampling (CARS) method is then used to extract the characteristic wavelengths in the spectrum, and the image's 9 color features and 6 texture features are combined to establish linear PLSR and nonlinear SVR prediction models by fusing the data information from the two sensors. The results show that, when compared to single data, the PLSR and SVR models based on low-level data fusion do not effectively improve the model's prediction accuracy, but rather produce poor prediction results. In contrast, the PLSR and SVR models established by middle-level data fusion have improved the prediction accuracy of moisture content in green tea processing. Among them, the established SVR model has the best effect. The correlation coefficient of the calibration set (Rc) and the root mean square error of calibration (RMSEC) are 0.9804 and 0.0425, respectively, the correlation coefficient of the prediction set (Rp) and the root mean square error of prediction (RMSEP) are 0.9777 and 0.0490 respectively, and the relative percent deviation is 4.5002. The results show that the middle data fusion based on machine vision and near-infrared spectroscopy technology can effectively predict the moisture content in the processing of green tea, which has important guiding significance for overcoming the low prediction accuracy of a single sensor. (C) 2022 Published by Elsevier B.V.
查看更多>>摘要:An understanding of the excited-state process and the sensing mechanism for specific anions can be helpful for the design and synthesis of fluorescent sensors in analytical chemistry and biotechnology. Here, we theoretically investigated the fluorescent response mechanism of a reported acylhydrazone-based fluorescent sensor (Soft Matter, 2019, 15, 6690) for fluoride recognition using the time-dependent density functional theory approach. At the M06/TZVP/SCM level, the vertical excitation energies, which were calculated based on the ground state and first singlet-state geometries of the sensor molecule, agreed well with the experimental ultraviolet-visible and fluorescence spectra. Therefore, the time-dependent density functional theory method was considered reasonable and effective. According to the frontier orbital analysis and an excited-state potential energy scan, we proposed an excited-state proton transfer mechanism for the sensor-fluorine complex, where the steric hindrance leads to a high potential barrier. The excited-state proton transfer process facilitates sensor molecule deprotonation, alleviates its steric hindrance effect and expands its conjugated system. As a result, the fluorescence emission band of the sensor molecule was red-shifted significantly with the addition of fluoride anion. Based on this fluorescence difference, the sensor could be used for fluoride anion identification. This work provides a strategy to study sensor-analyte interactions in the excited state and offers an approach to tune the fluorescence emission wavelength of sensor molecules in anionic environments. (C) 2022 Elsevier B.V. All rights reserved.
Andersson, Per OlaDahlberg, TobiasAndersson, MagnusMalyshev, Dmitry...
8页
查看更多>>摘要:Dipicolinic acid (DPA) is an essential component for the protection of DNA in bacterial endospores and is often used as a biomarker for spore detection. Depending upon the pH of the solution, DPA exists in different ionic forms. Therefore, it is important to understand how these ionic forms influence spectroscopic response. In this work, we characterize Raman and absorption spectra of DPA in a pH range of 2.0-10.5. We show that the ring breathing mode Raman peak of DPA shifts from 1003 cm(-1) to 1017 cm (-1) and then to 1000 cm(-1) as pH increases from 2 to 5. The relative peak intensities related to the different ionic forms of DPA are used to experimentally derive the pK(a) values (2.3 and 4.8). We observe using UV-vis spectroscopy that the changes in the absorption spectrum of DPA as a function of pH correlate with the changes observed in Raman spectroscopy, and the same pK(a) values are verified. Lastly, using fluorescence spectroscopy and exciting a DPA solution at between 210-330 nm, we observe a shift in fluorescence emission from 375 nm to 425 nm between pH 2 and pH 6 when exciting at 320 nm. Our work shows that the different spectral responses from the three ionic forms of DPA may have to be taken into account in, e.g., spectral analysis and for detection applications. (C) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
查看更多>>摘要:A new colorimetric biosensor for specific detection of azlocillin was developed by using DNA aptamer as recognition element and unmodified gold nanoparticles (AuNPs) as colorimetric indicator. In the absence of azlocillin, the AuNPs were protected by the aptamer and stabilized at high NaCl concentrations, displaying a red solution. In the presence of azlocillin, the aptamer reacts specifically with azlocillin, resulting in the aggregation of AuNPs and an apparent red to blue color change. The characteristic change can be easily observed by the naked eye and quantitatively detected by an ultraviolet-visible (UV-Vis) spectrometer. Under the optimal conditions, the absorbance variation at 522 nm (Delta A(522)) of AuNPs changed proportionally with increasing concentration of azlocillin, which exhibited a linear relationship in the concentration range of 50 nM to 500 nM, with a detection limit of 11.6 nM. Furthermore, the aptasensor was successfully used to detect azlocillin in milk and tap water samples, with recoveries ranging from 97.64% to 102.21% and a relative standard deviation (RSD) less than 3.81%. (C) 2022 Elsevier B.V. All rights reserved.
查看更多>>摘要:Precise design of organic photosensitizers (PSs) promoted the technological innovation for multimodal imaging-guided synergistic therapy. Nonetheless, various group substitution could not only optimize the basic photophysical behavior, but possibly change the aggregate, which handicaps the deep understanding of the "Formula-Aggergete-Property" relationship. Bearing this in mind, herein two isomers, named 6-TDE and 7-TDE, were prepared via substituting position modification. Among them, 6-TDE exhibited the grid-like structure, while 7-TDE presented wavy-like structure. Despite the aggregates were different, 6-TDE and 7-TDE shared common features including partly twisted backbone and non-overlapped-orbit, hence resulting in similar optical physical behavior such as decent extinction coefficient, near-IR emission, large stockes shifts, etc. Meanwhile, though two PSs could both generated Type-I and Type-II ROS, 7-TDE possessed smaller singlet-triplet splitting (DEST), which exhibited favorable ROS as well as outstanding mitochondrial targeting, achieving efficient photodynamic therapy (PDT) effect. During this process, mitochondrial autophagy could be tracked and observed effectively and in real-time. Moreover, 7-TDE presented outstanding performance in multimodal imaging, including fluorescence imaging (FLI), photoacoustic imaging (PAI) and photothermal imaging (PTI). This study enriches the strategy of precise molecular engineering to optimize theranostic agents. (C) 2022 Published by Elsevier B.V.
查看更多>>摘要:The application of surface enhanced infrared absorption (SEIRA) is severely restricted in many fields due to the SEIRA substrates are constructed mainly from expensive noble metals. Therefore, the development of new SEIRA substrates other than the noble metallic ones is very valuable. Here we introduced a new semiconductor SEIRA substrate, the indium tin oxide (ITO) nanoparticles (NPs), to study the SEIRA property. The results demonstrate that the ITO NPs show the SEIRA property and the enhancement is dependent to the doping ratio of the heteroatoms of tin. The ITO NPs with the 5% atomic doping ratio show the highest SEIRA enhancement factor (EF), which is about 24. The limit of detection (LOD) of the 1,1'-dicarboxyferrocene (dcFc) molecule was as low as 10(-)(5) mol/L. The present study proves that the tindoped indium oxide can be used as a new and inexpensive semiconductor SEIRA substrate. It also proves that the doped semiconductor NPs have strong potentials for being used as emerging SEIRA substrates. (C) 2022 Elsevier B.V. All rights reserved.
查看更多>>摘要:A highly sensitive and specific visual detection method for aflatoxin B1 (AFB1) based on the target specificity of aptamer, rolling circle amplification (RCA) and enzyme catalysis biological amplification effect has been established. In this work, AFB1 aptamer immobilized on the surface of magnetic beads (MB) serves as a molecular recognition probe. In the absence of AFB1, the aptamer and auxiliary linking probe (LP) maintain a double stranded state due to partial base pair complementarities. By contrast, in the presence of AFB1, the aptamer preferentially binds to AFB1 specifically, and the LP later restores to a single stranded state. Subsequently, the RCA reaction is triggered by above-mentioned single stranded LP to generate long DNA strands, which are employed to capture amounts of signal probes (SP) and horse radish peroxidases (HRP). Finally, amounts of HRP catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 and leads to a dramatic color change of the solution from colorlessness to deep blue as a signal indicator, obtaining a high sensitivity, high specificity and visual detection of AFB1. Under optimal conditions, a good linear detection range (0.5-40 pg.mL(-1)) was achieved, and the limit of detection (LOD) was 0.13 pg.mL(-1). Besides, the proposed aptasensor showed excellent specificity for AFB1 compared with five other mycotoxins. More than that, all reactions occur on the surface of the magnetic beads, which not only facilitates the detection operation process including the efficient isolation and collection of AFB1 from sample matrix, but also gets better selectivity and stronger resistibility to target analyte in complex sample matrix, adequately indicating its potential application in AFB1 practical detection. (C) 2022 Published by Elsevier B.V.