查看更多>>摘要:Herein, we examined the modulatory effects of Apocynum (APO) on Monosodium Glutamate (MSG)-induced oxidative damage on the brain tissue of rats after long-term consumption of blood serum components by biochemical assays, Fourier transform infrared spectroscopy (FTIR), and machine learning methods. SpragueDawley male rats were randomly divided into the Control, Control + APO, MSG, and MSG + APO groups (n = 8 per group). All administrations were made by oral gavage saline, MSG, or APO and they were repeated for 28 days of the experiments. Brain tissue and blood serum samples were collected and analyzed for measurement levels of malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO), superoxide dismutase (SOD) activity, and Spectroscopic analysis. After 29 days, the results were evaluated using machine learning (ML). The levels of MDA and MPO showed changes in the MSG and MSG + APO groups, respectively. Changes in the proteins and lipids were observed in the FTIR spectra of the MSG groups. Additionally, APO in these animals improved the FTIR spectra to be similar to those in the Control group. The accuracy of the FTIR results calculated by ML was 100%. The findings of this study demonstrate that Apocynin treatment protects against MSG-induced oxidative damage by inhibiting reactive oxygen species and upregulating antioxidant capacity, indicating its potential in alleviating the toxic effects of MSG.
查看更多>>摘要:A highly luminescent nitrogen-doped carbon quantum dots (N-CQDs) with a quantum yield of 44% was prepared by a facile hydrothermal synthesis method using citric acid (CA) and ethylenediamine (EDA) with a molar ratio of 1:1 at 200 degrees C for 5 h. The hypochlorite (ClO- ) ions significantly quench the fluorescence of the N-CQDs according to a pseudo-second-order kinetic model. A sensitive and selective quantification method with an excellent linearity in the range of 1.0-10.0 mu M was developed to detect ClO- ions based on the fluorescence quenching. The limit of detection (LOD) of 0.43 mu M and the limit of quantification (LOQ) of 1.04 mu M were achieved, respectively. This approach was successfully applied to detect the residual ClO- ions in local tap water and in swimming pool water. In addition, the developed fluorescence quenching method was also successfully applied in anti-counterfeiting and paper encryption. Both of the applications in real world suggest that the asprepared N-CQDs is a kind of promising fluorescence probe for rapid detecting ClO- ions in environment fields, and has potential applications in text secrecy fields.
查看更多>>摘要:Development of imaging probes for identification of tumors in the early stages of growth can significantly reduce the tumor-related health hazards and improve our capacity for treatment of cancer. In this work, three different furan and imidazole fluorescent derivatives abbreviated as Cyclo X, SAC and SNO are introduced for in vivo and in vitro imaging of cancer cells. The fluorescence quantum yield values were 0.226, 0.400 and 0.479 for Cyclo X, SAC and SNO, respectively. The excitation and emission wavelengths of maximum intensity were (360, 452), (350, 428) and (350, 432) nm for Cyclo X, SAC and SNO, respectively. The MTT reduction assay was used to estimate the cytotoxic activity of the proposed derivatives against HT-29 (cancer) and Vero (normal) cell lines. Cyclo X showed no cytotoxic effect, while SAC and SNO showed significantly higher cytotoxicity against the tested cell lines than cisplatin as a well-known anticancer drug. In vitro fluorescence microscopic images obtained using HT-29 cells showed that Cyclo X produced very bright images. The in vivo cancer cell imaging using 4T1 tumor-bearing mice revealed that Cyclo X is selectively accumulated in the tumor without distribution in the mice body organs. The spectral and structural stability, large Stokes shift, non-cytotoxicity and high level of selectivity for in vivo imaging are properties that make Cyclo X a suitable candidate to be used for long-term monitoring of cancer cells.
查看更多>>摘要:Thiophenol (PhSH) is widely used in industry, however, it is extremely harmful to the environment and human health due to its high toxicity. In this work, we developed a new FRET-ICT-based ratiometric fluorescent and colorimetric probe (DMNP) for detecting PhSH. DMNP had an ultrahigh energy transfer efficiency (99.7%) and clear spacing of two emission peaks (133 nm). DMNP achieved a fast response to PhSH and exhibited drastic enhancement (over 2100 folds) of the fluorescence intensity ratio upon addition of PhSH. DMNP showed good linear response in the PhSH concentration ranges of 0.5-13 lM and 17.0- 22.0 lM. Meanwhile, DMNP could also be applied to monitor PhSH in a variety of real water samples. CO 2022 Elsevier B.V. All rights reserved.
查看更多>>摘要:A novel strategy for sensing protein was proposed through combining the high selectivity of molecular imprinting technology with the excellent upconversion fluorescence of upconversion nanoparticles (UCNPs) and high specific surface area of metal-organic frameworks (MOFs). Herein, the UCNPs acted as signal reporter and MOFs were introduced to increase the rate of mass transfer. The UCNPs@MIL-100 as support material was prepared via a step-by-step method. The imprinted material-coated UCNPs@MIL-100 (UCNPs@MIL-100@MIPs) were obtained by sol-gel technique. The results showed that as the increase of the template protein concentration, the fluorescence intensity of UCNPs@MIL-100@MIPs quenched gradually, and the imprinting factor was 2.90. The linear in the range of 1.00 to 8.00 mu M, and the detection limit was 0.59 mu M. Therefore, the novel optosensing material is very promising for future applications.
查看更多>>摘要:The timely detection of apple bruises caused by collision and squeeze is of great significance to reduce the economic losses of the apple industry. This study proposed a spectral analysis model (SpectralCNN) based on a one-dimensional convolutional neural network to detect apple bruises. The influences of six spectral preprocessing methods on the SpectralCNN model were firstly analyzed in this paper. Compared with traditional chemometric models, the SpectralCNN model had a better accuracy, which was demonstrated not depend on the spectral preprocessing method by experiment results. Then, 20 characteristic wavelengths could be extracted by successive projection algorithm. The SpectralCNN model could achieve an accuracy of 95.79% on the test set of characteristic wavelengths, indicating that the extracted characteristic wavelengths contain most of the features of bruised and healthy pixels.
查看更多>>摘要:A simple colorimetric method was developed for sensitive and selective detections of I- and Hg2+. Histidine stabilized gold nanoclusters (His-AuNCs) were synthesized and catalyzed the oxidation of colorless 3,3',5,5'- tetramethylbenzidine (TMB) to a blue product. As a strong ligand toward gold, iodide (I-) attached to the surface of the His-AuNCs and significantly enhanced the oxidase-like activity of the His-AuNCs. Based on this enhancement, a sensitive colorimetric response toward I- was obtained. Furthermore, the strong interaction between Hg2+ and I- was adopted for an indirect Hg2+ detection. Under the optimal conditions, the platform presented high selectivity for the determinations of I- and Hg2+ in the ranges 0.02-1 mu M and 0.05-0.8 mu M, with detection limits as 3.3 nM and 8 nM respectively. This colorimetric assay was successfully applied for analysis of real samples.
查看更多>>摘要:Polyethylene glycol monomethyl ether-block-poly(glycidyl methacrylate)-block-poly[2-(diethylamino)ethyl methacrylate] triblock copolymer was synthesized to prepare self-assembled micron sized films via a novel approach named as "phase separated micellar self assembly method". Liquid-air interface self assembly method via slow solvent evaporation was used to obtain micellar films. Cross-linking of polymer films was carried out by diffusion of fluorophore cross-linker into polymer solution from subphase. In-situ micellar formation was triggered via driven forces such as molecular interactions and slow evaporation of solvent. Thiazolo[5,4-d]thiazole based cross-linker fluorophores containing alkali subphases were used to prepare highly fluorescent cross-linked micellar films. Micellar morphologies of the films were characterized with SEM while the cross-sections of fluorophore cross-linked films were observed with TEM analysis to examine diffusion of the dye as nano-sized particles into the polymer film. Convenience and usability of the micellar films as drug delivery material were demonstrated with Propranolol HCl release via UV-Vis spectroscopic studies. Optical properties of the films before and after drug release were determined via photoluminescence spectroscopy to be able to sense the completion of the drug release process. Swelling and shrinkage properties of the films were also determined in different pH values. These highly fluorescent polymer films have great potential as drug delivery materials and biomedical sensing applications.
Okla, Mohammad K.Balasurya, S.Alaraidh, Ibrahim A.Mohebaldin, Asmaa...
11页
查看更多>>摘要:L-cystine (L-cys) functionalized plasmonic silver nanomaterial (Ag NPs) was fabricated toward the selective and sensitive detection of paracetamol and cadmium. The prepared L-cys-Ag nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD) and fourier transform infrared spectroscopy (FTIR) analyses. SEM imaging show that Ag NPs was decorated on the surface of L-cysteine 3D cubic nanosheet. L-cys-Ag NPs showed selective and sensitive detection towards paracetamol and cadmium. The interference study confirms that the presence of other metal ions didn't inhibit the detection of cadmium by L-cys-Ag NPs. The limit of detection of paracetamol and cadmium by L-cys-Ag NPs was calculated to be 1.2 and 2.82 nM respectively. In addition, the real sample detection of paracetamol on blood serum and urine, and cadmium on STP were performed and the recovery percentage was above 97%. Further, the real sample analysis was performed in tap and drinking water and the recovery percentage was more than 98%. The analytic logic gate on the multicolour detection of cadmium and paracetamol was performed for the semi-quantitative monitoring of paracetamol and cadmium by L-cys-Ag NPs. The developed L-cys-Ag NPs were found to be an effective tool for the monitoring of cadmium in environmental water bodies and paracetamol in blood and urine. (C) 2022 Elsevier B.V. All rights reserved.