查看更多>>摘要:A portable short-wavelength infrared microscope hyperspectral imager (SMHI) combined with machine learning algorithms for the purpose of classifying geographical origins as well as root types of Lindera aggregata is developed. The spectral range of the SMHI system is 1090-1820 nm (5500-9100 cm-1) with spectral and spatial resolutions of 4 nm and 27.3 mu m, respectively. Utilizing PCA-RF algorithms, the geographic origin of tuberous roots and leaves from five different origins were classified with accuracies of 97.5% and 97.8%, respectively. In addition, spatial identification of tuberous root and taproot tubers in a mixed sample was done with an accuracy of 98.98%. The accuracy of origin classification and spatial identification are high enough which indicate the significant potential of applying SMHI system into the non-invasive spatial mapping and rapid quality assessment of medicinal herbs. (C) 2022 Published by Elsevier B.V.
查看更多>>摘要:MicroRNAs (miRNAs) are important biomarkers that are closely associated with certain diseases. The detection of miRNA is critical because it provides the necessary information for Disease Diagnosis. In this study, we achieved miRNA determination by coupling the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats-CRISPR-associated) system with strand displacement amplification (SDA). In the experiment, miRNA was used as the initiator of SDA, and the activator of Cas12a nuclease activity was amplified by SDA. Subsequently, the unique nuclease activity of Cas12a was exploited to carry out trans cleaving on the ssDNA reporting probe modified with carboxyfluorescein(FAM) and BHQ1(dark Quencher: 480-580 nm) to achieve a signal output. In addition to chain design and reaction simplification, this method is lofty sensitive and selective for the determination of miRNA with a good linear range of 250 fmol center dot L-1 ~ 40 pmol center dot L-1, the detection limit of 150 fmol center dot L-1 (S/N = 3), and the method showed good recovery in spiked human serum. Overall, this method is expected to be applied to diagnosis with miRNA biomarkers because of its rapidity, high sensitivity, and high selectivity.
查看更多>>摘要:Plasma-driven photocatalytic reactions have great research value in the fields of energy utilization, environmental pollution treatment and micro-nano information encryption. In most cases, the substrates used to study photocatalytic reactions are dispersed and disordered, which leads to poor signal reproducibility and makes it difficult to realize applications in the field of quantitative analysis. In this paper, two different sizes of polystyrene (PS) microspheres were used as templates to prepare gold microsphere arrays (Au MA) with homogeneous particle size and regular arrangement. The p-Aminothiophenol (PATP) was selected as the probe molecule to systematically investigate the photocatalytic reaction on Au MA, and the dependence of the photocatalytic reaction on the particle size of the spheres was discussed. It was found that the smaller size of Au MA has higher catalytic activity. In addition, using conventional gold films as a comparison, no significant photocatalytic reaction was found under the same experimental conditions. The reason is the existence of strong surface plasma "hot spots" in the interstices of the particles on the surface of the Au MA, which promotes the reaction. The above experimental results are of theoretical and practical significance for the in-depth study of the photocatalytic effect of micronano array catalytic substrates.
Ustimova, Maria A.V. Fedorov, YuriChmelyuk, Nelly S.Abakumov, Maxim A....
11页
查看更多>>摘要:Two bis(styryl) dyes, varying in type of spacer between two mono(styryl) units, were tested for interactions with ct-DNA or cl-RNA. Both compounds showed strong affinity toward ds-DNA/ss-RNA, the binding mode of the interaction is shifting between DNA groove binding to RNA intercalation. Consequently, interaction with DNA shows a stronger flare-up of fluorescence (151 times for dye 1 and 118 times for dye 2) than when binding with RNA (23 times and 36 times correspondingly). The presence of energy transfer in the bis(styryl) system increases the Stokes shift of the dye, so when irradiating the system in the region of 370-380 nm, fluorescence is detected at 610-620 nm. The biological experiments showed that the efficient intracellular fluorescence quench was observed in the DNase digest test suggested that dyes can be applied by recognition of DNA in the presence of RNA molecules.
查看更多>>摘要:In the present work, artificial light-harvesting systems with a fluorescence resonance energy transfer (FRET) process were successfully obtained in the aqueous solution. We designed and synthesized an amphiphilic pyrene derivative with two 4-vinylpyridium arms (Pmvb), which can interact with cucurbit[8]uril (CB[8]) to form supramolecular polymer through host-guest interactions in aqueous solution. The formation of supramolecular polymers results in a significant enhancement of fluorescence, which makes Pmvb-CB[8] an ideal energy donor to construct artificial light-harvesting systems in the aqueous solution. Subsequently, two different fluorescence dyes Rhodamine B (RhB) and Sulforhodamine 101 (SR101) were introduced as energy acceptors into the solution of Pmvb-CB[8] respectively, to fabricate two different artificial light-harvesting systems. The obtained artificial light-harvesting systems can achieve an efficient energy transfer process from Pmvb-CB[8] to RhB or SR101 with high energy transfer efficiency. (c) 2022 Elsevier B.V.
查看更多>>摘要:Nitrobenzene and Aniline are representatives of the nitro or amino compounds of benzene, mainly used in the manufacture of dyes, spices, medicines, and so on. Extensive use of Nitrobenzene and Aniline may cause pesticide residue pollution and have carcinogenic effects on organisms. In this paper, the Nitrobenzene and Aniline single molecules and their complexes with gold nanoparticles are studied theoretically by Raman spectroscopy, the surface-enhanced Raman spectroscopy (SERS) and the density functional theory (DFT) simulations. Selective binding of gold nanoparticles (AuNPs) to the analyte was used to study the molecular electrostatic potential (MEP), frontier molecular orbital (FMO) and the Raman activity spectra of Nitrobenzene and Aniline, as well as the Raman activity spectrum of the complexes. The most electronegative sites of Nitrobenzene and Aniline are found in the MEP and the hypothesis that these sites might be the adsorption sites of Nitrobenzene/Aniline molecules at the gold surface. At the same time, the MEP of the Nitrobenzene/Aniline complexes also prove the existence of the charge transfer effect between Nitrobenzene/Aniline and Au. The FMO energy gap of Nitrobenzene/Aniline is 0.18983 eV and 0.18953 eV, respectively, and which, after adding the Au-3 clusters, change to 0.03376 eV and 0.0797 eV, respectively, indicating that the Nitrobenzene/Aniline-Au3 complexes have stronger chemical activities and are more prone to the charge transfer effects. The electrophilic indices of Nitrobenzene (0.17921 eV) and Aniline (0.05635 eV) are calculated and analyzed, as well as that of Nitrobenzene/Aniline-Au-3 complexes after adding the Au3 atomic clusters, 0.80819 eV and 0.19819 eV, respectively. The obvious increasing trend in the electrophilic indices of the Nitrobenzene/Aniline-Au-3 complexes indicate their stronger biological activities and more prone to chemical reactions. The chemisorption of Nitrobenzene/Aniline and gold nanoparticles complexes is studied by the SERS, and the Raman formation of the complexes at different binding sites of Nitrobenzene/Aniline and Nitrobenzene/Aniline-Au-3 is well explained by the surface selection rule. The reason for the selective enhancement of the spectral peaks presented in the Raman activity spectrum is calculated, and the enhancement factor of the chemical enhancement due to the charge transfer effect is calculated as well. The reason for the peak offset in the SERS spectrum to the conventional Raman spectrum is explained.
查看更多>>摘要:An optical coherence tomography (OCT) system combined with near-infrared spectroscopy (NIRS) was developed to carry out simultaneously the cross-sectional observation and spectral measurement of a specific area inside a polymer sample. This OCT-NIRS system consists of a fiber-optic-based spectrometer combined with an OCT system and enables non-invasive imaging up to a depth of several millimeters and the recording of the NIR spectrum in the observed area. A subsequent analysis of the collected data will provide key information revealing the way in which the microscopic structure of the polymer is affected by the chemical composition around it. A structural defect inside a molded polyamide (PA) 66 sample was examined with the OCT-NIRS system to demonstrate how this technique can be utilized to characterize chemical composition as well as the morphological features inside the sample. A specific void was detected by OCT when the PA sample was molded without any drying treatment. The NIR spectrum collected around the void area of the undried PA was then compared with that of vacuum-dried PA by two-trace two-dimensional (2T2D) correlation analysis to identify a subtle but pertinent difference in the spectral features. The appearance of several correlation peaks in the 2T2D asynchronous correlation spectrum revealed that the OH group represented by the NIR band at 1446 nm is found in relative abundance around the void, which clearly reveals that the development of the void in the molded PA results from inadequate sample pretreatment.
查看更多>>摘要:Metal nanoclusters (NCs) are widely present today in biosensing, bioimaging, and diagnostics due to their small size, great biocompatibility, and sensitivity to the biomolecular environment. Silver (Ag) NCs often possess intense fluorescence, photostability, and low photobleaching, which is in high demand during the detection of organic molecules. Pterins are small compounds, which are used in medicine as biomarkers of oxidative stress, cardiovascular diseases, neurotransmitter synthesis, inflammation and immune system activation. It is experimentally possible to detect pterin (Ptr) through the adsorption on Ag colloid. We optimized geometries and evaluated the binding energy in Ptr-Agnq complexes (n = 1-6; q = 0, +1, +2) using quantum chemistry methods. Different Ptr atoms were preferential for silver attachment depending on NC charge and size. The highest Eb was obtained for the complexes between the Ptr0 and Ag32+ (-50.8 kcal mol- 1), between Ptr-1 and Ag32+ (-64.8 kcal mol-1), which means that these complexes should be formed preferably in aqueous solutions in acidic and alkaline media, respectively. The colorimetric detection of pterin with silver clusters does not seem to be promising. However, intense S0 -> S1 transitions of Ag5+ complexes look promising for luminescent Ptr detection. SERS detection of pterin is better to be done at pH > 8 since deprotonated pterin Raman undergo more dramatic changes upon addition of Ag than the neutral pterin. The characteristics of absorption and vibrational spectra of silver-pterin should be exploited during biosensor development.
查看更多>>摘要:A hydrazone (T1) was synthesized by reacting 8-hydroxyjulolidine-9-carboxaldehyde with 2-furoic hydrazide and then modified with Al3+ ion to form a novel hydrazone Al3+ complex (T1-Al3+) in an aqueous solution (8% propylene glycol in 10 mM HEPES pH 5.5). The T1-Al3+ complex was studied as a Cu2+ selective sensor due to its highly efficient capacibility of paramagnetic quenching. The results showed that the T1-Al3+ complexed sensor possesses remarkable sensitivity and selectivity for Cu2+ ion in 8% propylene glycol in 10 mM HEPES pH 5.5 as compared with other tested analytes. Notably, this sensor has a broad linear detection range of 10-110 lM for Cu2+ ion anda detection limit level of 0.62 lM, which is lower than the Cu2+ concentration threshold in drinking water designated by the United States Environmental Protection Agency (EPA). Additionally, it was detectable for the presence of Cu2+ ion in mineral water and tap water samples. The selectivity of T1-Al3+ complexed sensor with Cu2+ ion could be explained by the basis of computation with Gaussian software complied with the basis sets of B3LYP/6-31 G(d,p)/LANL2DZ. Furthermore, only T1 exhibited anticancer efficacy against HeLa and U251 cells with MTT assay.
查看更多>>摘要:In this work, a simple dual-mode immunoassay for detecting Ochratoxin A (OTA) was developed by mixing Gquadruplex/N-methylmesoporphyrin IX (G4/NMM) and 3,3',5,5'-tetramethylbenzidine (TMB). The fluorescence of G4/NMM can be quenched by oxidized TMB (oxTMB) because the absorbance of oxTMB overlapped with the fluorescence emission of G4/NMM. In the absence of OTA, large amounts of oxTMB were formed with blue color and the fluorescence of G4/NMM was quenched. In the presence of OTA, the concentration of oxTMB was decreased, therefore the fluorescence of G4/NMM increased. The linear range of fluorescence immunoassay was 0.195-25 ng/mL, and the linear range of the absorbance immunoassay was 0.049-1.563 ng/mL. Thus, the linear range of this dual-mode immunoassay can be expanded to 0.049-25 ng/mL. Meanwhile, the new method showed good selectivity for OTA. Besides, the satisfactory recovery rates implied the new method had a potential value for practical sample detection.