首页期刊导航|Developmental and Comparative Immunology
期刊信息/Journal information
Developmental and Comparative Immunology
Pergamon Press
Developmental and Comparative Immunology

Pergamon Press

0145-305X

Developmental and Comparative Immunology/Journal Developmental and Comparative ImmunologySCIISTP
正式出版
收录年代

    Long noncoding RNAs: Emerging players regulating innate immune memory in the red flour beetle

    Halim, Hesham M. Abd ElAli, Ali
    8页
    查看更多>>摘要:A variety of strategies have been evolved to eradicate invading microbes. Phagocytes have developed in vertebrates and invertebrates to confer a non-specific immune response to pathogens. Besides, vertebrates have evolved lymphocytes to develop memory cells that can quickly respond upon the next exposure to the same pathogen. Although lymphocytes are absent in invertebrates, historical evidence, dating back to the 1920s, indicated the presence of immune memory in invertebrates. However, the concept of long-lasting non-specific defense predominated until recent evidence has been introduced in the first decade of the 21st century. Although more evidence has been introduced later, the molecular mechanism underlying the innate immune memory is largely undefined in invertebrates. Long noncoding RNAs (lncRNAs) have demonstrated a role in regulating various biological processes, including immune response. In this review, we will explore the potential role of lncRNAs in developing innate immune memory in the red flour beetle (Tribolium castaneum).

    Functional characterization of a novel tumor necrosis factor gene (TNF-New) in rock bream (Oplegnathus fasciatus)

    Ko, SungjaeLim, JongwonHong, Suhee
    13页
    查看更多>>摘要:The novel tumor necrosis factor (TNF-New or TNFN) gene has been identified only in teleost such as zebrafish, medaka (Oryzias latipes), fugu (Takifugu rubripes), and rainbow trout (Oncorhynchus mykiss). In this study, a putative TNFN gene in rock bream (named RB-TNFN) was cloned and its functional expression in the immune system was analyzed. Although it was previously reported to share a high degree of homology with mammalian lymphotoxin (LT)-beta, in silico analysis revealed that RB-TNFN differed slightly from mammalian LT-beta in its genomic structure, phylogenetic relationship, and predicted protein tertiary structure, whereas the genomic location of TNFN (immediately behind TNF-alpha) was the same as that of LT-beta. In healthy rock bream, RB-TNFN gene expression was the highest in the liver and the lowest in the head kidney. In vitro, it was significantly upregulated in head kidney cells following polyinosinic:polycytidylic acid, concanavalin A, phytohemagglutinin, or calcium ionophore (CI) stimulation and in spleen cells by lipopolysaccharide (LPS), CI, and rock bream iridovirus (RBIV). In vivo, it was upregulated in the spleen, liver, and gut on day 1 and in the blood on day 3 following LPS injection, and in the blood, head kidney, and liver following RBIV vaccination. Post-RBIV infection, the vaccinated group showed a significantly higher TNFN gene expression in the head kidney and blood than the unvaccinated group. Treatment with recombinant TNFN protein (RB-rTNFN) resulted in significantly upregulated interleukin-1 beta expression in the head kidney, spleen, blood, liver, and peritoneal cells. It also enhanced IL-8 gene expression in the head kidney, blood, and peritoneal cells, and interferon gamma gene expression in the gut and gills on day 1. TNFN and cyclo-oxygenase-2 gene expression was upregulated in peritoneal cells on day 3. Flow cytometry analysis revealed a significant increase in the peritoneal lymphocyte population after the intraperitoneal (i.p.) injection of RB-rTNFN. These results suggest that RB-TNFN mediated innate and adaptive immunity in rock bream.

    The mitochondrial activity of leukocytes from Artibeus jamaicensis bats remains unaltered after several weeks of flying restriction

    Javier Sanchez-Garcia, F.Alvaro Aguilar-Setien, JoseAngelica Perez-Hernandez, C.Kolstoe, Simon E....
    6页
    查看更多>>摘要:Bats are the only flying mammals known. They have longer lifespan than other mammals of similar size and weight and can resist high loads of many pathogens, mostly viruses, with no signs of disease. These distinctive characteristics have been attributed to their metabolic rate that is thought to be the result of their flying lifestyle. Compared with non-flying mammals, bats have lower production of reactive oxygen species (ROS), and high levels of antioxidant enzymes such as superoxide dismutase. This anti-oxidative vs. oxidative profile may help to explain bat's longer than expected lifespans. The aim of this study was to assess the effect that a significant reduction in flying has on bats leukocytes mitochondrial activity. This was assessed using samples of lymphoid and myeloid cells from peripheral blood from Artibeus jamaicensis bats shortly after capture and up to six weeks after flying deprivation. Mitochondrial membrane potential (Delta psi m), mitochondrial calcium (mCa2+), and mitochondrial ROS (mROS) were used as key indicators of mitochondrial activity, while total ROS and glucose uptake were used as additional indicators of cell metabolism. Results showed that total ROS and glucose uptake were statistically significantly lower at six weeks of flying deprivation (p < 0.05), in both lymphoid and myeloid cells, however no significant changes in mitochondrial activity associated with flying deprivation was observed (p > 0.05). These results suggest that bat mitochondria are stable to sudden changes in physical activity, at least up to six weeks of flying deprivation. However, decrease in total ROS and glucose uptake in myeloid cells after six weeks of captivity suggest a compensatory mechanism due to the lack of the highly metabolic demands associated with flying.

    A Dicer2 from Scylla paramamosain activates JAK/STAT signaling pathway to restrain mud crab reovirus

    Deng, HengweiXian, DanrongLian, TaixinHe, Mingyu...
    11页
    查看更多>>摘要:A Dicer2 gene from Scylla paramamosain, named SpDicer2, was cloned and characterized. The full length of SpDicer2 mRNA contains a 121 bp 5'untranslated region (UTR), an open reading frame (ORF) of 4518 bp and a 3 ' UTR of 850 bp. The SpDicer2 protein contains seven characteristic Dicer domains and showed 34%-65% identity and 54%-79% similarity to other Dicer protein domains, respectively. The mRNA of SpDicer2 was high expressed in hemocytes, intestine and gill and low expressed in the eyestalk and muscle. Moreover, expression of SpDicer2 was significantly responsive to challenges by mud crab reovirus (MCRV), Poly(I:C), LPS, Staphylococcus aureus and Vibrio parahaemolyticus. SpDicer2 was dispersedly presented in the cytoplasm except for a small amount in the nucleus. SpDicer2 could activate SpSTAT to translocate from the cytoplasm to the nucleus, and significantly increase the transcription activity of the wsv069 promoter, suggesting that SpDicer2 activated the JAK/STAT pathway. Furthermore, silencing of SpDicer2 in vivo increased the mortality of MCRV infected mud crab and the viral load in tissues and down-regulated the expression of multiple components of Toll, IMD and JAK-STAT pathways and almost all the examined immune effector genes. These results suggested that SpDicer2 could play an important role in defense against MCRV via activating the JAK/STAT signaling pathways in mud crab.

    Porcine TRIM35 positively regulate TRAF3-mediated IFN-beta production and inhibit Japanese encephalitis virus replication

    Li, ChenxiZhou, YanyangChen, XuanZhang, Yanbing...
    10页
    查看更多>>摘要:Tripartite motif 35 (TRIM35) protein is a ubiquitin E3 ligase that mediates interferon-beta (IFN-beta) production via regulating ubiquitination of multiple adaptor proteins in innate immune signaling pathways. Here, we cloned the porcine TRIM35 (porTRIM35) gene and analyzed its involvement in IFN-beta expression as well as the antiviral response against Japanese encephalitis virus (JEV). The full-length porTRIM35 gene encoded a 493-amino acid protein and exhibited 79.6%-89.5% sequence similarity with its orthologues in humans, mice, monkeys and rabbits. porTRIM35 possessed typical structural features of TRIMs, including a RING domain, a B-box domain, a coiled-coil domain and a PRY/SPYR domain. Exogenous overexpression of porTRIM35 significantly up-regulated the mRNA expression level of IFN-beta in swine testicular (ST) cell in response to poly(I:C) stimulation, whereas knockdown endogenous expression of porTRIM35 lead to a decrease in the expression level of IFN-beta. Mechanically, porTRIM35 directly interacted with porcine TNF-receptor associated factor 3 (TRAF3) and catalyzed its Lys63-linked polyubiquitination, thereby leading to the up-regulation of IFN-beta production. Meanwhile, we demonstrated that the RING and PRY/SPRY domains were essential for the E3 ligase activity of porTRIM35. In response to JEV infection, the endogenous expression of porTRIM35 was markedly inhibited at the mRNA level, while exogenous expression of porTRIM35 significantly elevated the expression of IFN-beta induced by JEV infection and reduced viral titers in ST cells, suggesting that porTRIM35 is a negative regulator for JEV replication. These data demonstrate the importance of porTRIM35 in IFN-beta expression as well as the antiviral response against JEV replication.

    Vibrio harveyi infections induce production of proinflammatory cytokines in murine peritoneal macrophages via activation of p38 MAPK and NF-kappa B pathways, but reversed by PI3K/AKT pathways

    Yu, GuiliYu, HongYang, QiankunWang, Jinxin...
    12页
    查看更多>>摘要:Vibrio harveyi is a zoonotic pathogen that can infect humans through wounds and cause severe inflammatory responses. Previous studies have reported that the Toll like receptors (TLR) mediated MAPK, AKT and NF-kappa B signaling pathways are involved in innate immune system resistance to pathogen invasion. However, the molecular mechanism of these pathways, as well as their involvement in V. harveyi infection remains elusive. This study established a V. harveyi infection model using murine peritoneal macrophages (PMs). Various techniques, including western blotting, ELISA, RT-qPCR, immunofluorescence, inhibition assays, were used to explore the roles of TLRs, MAPK, AKT and NF-kappa B signaling pathways in V. harveyi-induced inflammatory responses. ELISA assays showed that V. harveyi infection triggered proinflammatory cytokines secretion in PMs. RT-qPCR and inhibition assays showed that TLR2 participated in V. harveyi infection and up-regulated the proinflammatory cytokines secretion in murine PMs. Western blotting data showed that the phosphorylation of p38, JNK, AKT, and NF-kappa B p65 were significantly increased partly mediated by TLR2. In addition, immunofluorescence assays revealed that the NF-kappa B p65 translocated into nucleus in response to V. harveyi infection. The secretion of IL-1 beta, IL-6, IL-12, and TNF-alpha were considerably reduced when the p38 MAPK and NF-kappa B signaling pathways were blocked, whereas blocking of AKT significantly increased the expression of IL-1 beta, IL-6, IL-12, and TNF-alpha. These findings indicate that V. harveyi infection induces inflammatory responses in murine PMs via activation of p38 MAPK and NF-kappa B pathways, which are partly mediated by TLR2, but are inhibited by PI3K/AKT pathways.

    Current knowledge of immune priming in invertebrates, emphasizing studies on Tenebrio molitor

    Kojour, Maryam Ali MohammadieBaliarsingh, SnigdhaJang, Ho AmYun, Keunho...
    11页
    查看更多>>摘要:Vertebrates rely on the most sophisticated adaptive immunity to defend themselves against various pathogens. This includes immunologic memory cells, which mount a stronger and more effective immune response against an antigen after its first encounter. Unlike vertebrates, invertebrates' defense completely depends on the innate immunity mechanisms including humoral and cell-mediated immunity. Furthermore, the invertebrate equivalent of the memory cells was discovered only recently. Since the discovery of transgenerational immune priming (TGIP) in crustaceans, numerous findings have proven the IP in invertebrate classes such as insects. TGIP can be induced through maternal priming pathways such as transcriptional regulation of antimicrobial peptides, and also paternal IP including the induction of proPO system activity. We appraise the diversity and specificity of IP agents to provide sustained immunologic memory in insects, particularly T. molitor in the review. An understanding of IP (more so TGIP) response in T. molitor will deepen our knowledge of invertebrate immunity, and boost the mass-rearing industry by reducing pathogen infection rates.

    Genomic organization, evolution and functional characterization of caspase-2 and caspase-8 in miiuy croaker (Miichthys miiuy)

    Geng, ShangGu, LipingZhong, LichangXu, Tianjun...
    6页
    查看更多>>摘要:As the central link and executor of cell apoptosis, the caspase protease family has received extensive attention in recent years. However, the genetic characteristics and immune functions of some caspases are still unknown in fish. In our study, we cloned the full-length caspase-2 (mmCasp2) and caspase-8 (mmCasp2) of miiuy croaker, then we analyzed characteristics and functions of these two genes which are upstream of the apoptosis cascade reaction. Mmcasp2 and mmCasp8 exhibited a conserved domain (CASc), and the different part is that the mmCasp2 has a CARD domain, while mmCasp8 have two DED domains. Sequence and evolution analysis results showed that caspase-2 is more conservative than caspae-8 in the process of evolution. Cellular localization analysis showed that the distribution of mmCasp2 and mmCasp2 was in cytoplasm. The real-time PCR analysis showed that these two caspases are constitutively expressed in different tissues, and the expression of mmCasp2 and mmCasp8 were up-regulated in the liver, spleen, and kidney after infection with V. anguillarum. Lastly, qRTPCR and Luciferase assays analysis showed that mmCasp2 and mmCasp8 can inhibit the NF-kB pathway. In general, we systematically analyzed the structure, evolution and related functional experiments of the caspase-2 and caspase-8 in miiuy croaker, which will help further understand the role caspase family plays in the apoptosis and immune response.

    Current understanding and perspectives on the potential mechanisms of immune priming in beetles

    Liu, Qian-XiaSu, Zhi-PingLiu, Hui-HuiLu, Sheng-Ping...
    7页
    查看更多>>摘要:Beetles are the most diverse group of insects in Insecta which can be found in almost every habitat and environment on Earth. The possessing of the rapid and effective immune defenses is one of the important factors for their success. It is generally recognized that beetles only rely on the non-specific innate immune defense, without immunological memory, to fight against pathogens. However, there was cumulative evidence for the innate immune memory in invertebrates, including beetles, over the last decades, implying that insect innate immunity is more complex and has more features than previously thought. In beetles, it has been well documented that the specific or nonspecific enhanced immunocompetence can persist throughout development within generations and can even be transferred to the descendents in the next generation. Although insect immune priming might be shaped by epigenetic modifications and transferring effectors, mRNA and microbial signals, the solid experimental evidence to support the causal relationship between any of them and immune priming is still scarce. The combined usage of 'omics' approaches and CRISPR/Cas9 in the appropriate insect models with well-known genetic background, Tribolium castaneum and Tenebrio molitor, will help us to decipher the molecular mechanisms by which immune priming occurs in beetles in depth.

    Genomic and transcriptomic identification of the cathepsin superfamily in the Mediterranean mussel Mytilus galloprovincialis

    Romero, AlejandroNovoa, BeatrizFigueras, Antonio
    14页
    查看更多>>摘要:Cathepsins are lysosomal enzymes that participate in important physiological processes, such as development, tissue remodelling, senescence and innate and adaptive immunity. The description of these proteins in molluscs is fragmented and incomplete. In the present work, we identified most of the cathepsin family members in the bivalve Mytilus galloprovincialis by screening published genomic and transcriptomic information. In this specie, the cathepsin family is composed of 41 proteins showing a high diversification of cathepsins D, L and F, not previously observed in other taxonomic groups. Specific set of cathepsins are constitutively expressed in the different mussel tissues. Transcriptomic analyses suggested coordinated activity of the different cathepsins and their sequential activation during larval development. Cathepsins also play an important role in the immune response of bivalves, and different immune pathways seem to be activated in response to Vibrio splendidus infection.