查看更多>>摘要:Nanosecond pulsed electric field (nsPEF) causes the permeabilization of the cell membrane and has been used to non-thermally treat cancerous tissues. As increased permeabilization in membranes were reported to be accompanied by impedance changes, the ablation effect of nsPEF on tissues can be monitored via the changes in tissue conductivity. In this study, effects of nsPEF on biological tissues were evaluated by determining the conductivities of potato and 4 T1-luc breast tumor tissues ex vivo from a murine model subjected to multiple 100-ns, 1-10 kV pulses. Using a four-needle electrode system with a calibrated electrode constant of 1.1 +/- 0.1 cm, the conductivities of tissues was determined from both the network-analyzer measurement, before and after treatment, and voltage-current measurement in realtime. The conductivity of the potato tissue was measured for a frequency range of 0.1-3 MHz, and it increased with increasing pulse number and voltage amplitude. The conductivity of the tumor tissue was also observed to increase with pulse number and pulse voltage over a similar frequency range. In addition, the linear correlation between the ablation area in a treated potato tissue and the conductivity change in the tissue suggests that conductivity analysis of biological tissue under treatment could be a fast and sensitive approach to evaluate the effectiveness of a nsPEF treatment. (c) 2021 Elsevier B.V. All rights reserved.
查看更多>>摘要:Chronic obstructive pulmonary disease (COPD) and asthma are the two most common obstructive lung diseases which affects millions worldwide and impose an enormous burden on global healthcare. The overlapping features shared by these two diseases often make differential diagnosis difficult to achieve, leading to misdiagnosis of these patients. Both asthma and COPD are associated with chronic inflammation of the airways which is perpetuated by the interplay between immunological mediators. The crucial role played by these mediators make them attractive targets for disease diagnosis. The present study investigates the immunological mediator profile in these patients as compared with controls. Further, a potential biomarker for the development of a sensing platform is identified. Multiplexed analysis of 8 commonly studied immunological markers (IL-4, IL-5, IL-6, IL-13, TGF-beta, IFN-gamma, MCP-1 and NGAL) in serum showed distinct dysregulation pattern, with IL-13 showing the highest potential for differential diagnosis. An impedimetric self-assembled monolayer (SAM) based sensor for detecting IL-13 is developed to distinguish between asthma and COPD. The device shows reliable output with high accuracy and sensitivity towards the detection of IL-13. (C) 2021 Elsevier B.V. All rights reserved.
Anusha, TummalaBhavani, Kalli SaiKumar, J. V. ShanmukhaBrahman, Pradeep Kumar...
16页
查看更多>>摘要:Serum 25-hydroxyvitamin D (25(OH)D) has been clinically considered as a novel biomarker for vitamin D deficiency. The current standard technologies for the detection of 25(OH)D are performed in sophisticated laboratories exhibiting the practical limitations for onsite and affordable testing. Therefore, the development of a cost-effective device for Vitamin D is extremely necessary to provide an earlier diagnosis. Herein, for the first time, we propose a novel label-free impedimetric immunosensor for the detection and quantification of 25-hydroxyvitamin D-3 (25(OH)D-3) biomarker in serum samples based on the Au nanoparticles functionalized GCN-beta-CD nanocomposite. To fabricate the sensing probe, Ab-25(OH)D-3 antibodies were covalently immobilized on GCN-beta-CD@Au/GCE using carbodiimide chemistry. The surface morphology and structural properties of constructed immunosensor were confirmed by different analytical techniques. Electrochemical impedance spectroscopy technique (EIS) has been selected as the main detection method to measure the Antibody (Ab) and Antigen (Ag) interaction at the immunosensor surface because it is label-free, less destructive to the activities of the biomolecule, and highly sensitive. The as-prepared immunosensor exhibited an excellent concentration range from 0.1 ng/ml to 500 ng/ml with the lowest limit of detection of 0.01 ng/ml. Furthermore, the sensing probe was validated in serum samples and obtained results were compared with the standard CLIA technique. The results have revealed that the sensing probe could be used for clinical diagnosis of Vitamin D deficiency in the clinical laboratories. (C) 2021 Elsevier B.V. All rights reserved.
查看更多>>摘要:Redox enzymes are capable of harvesting electrical energy from biofuels in high catalytic activity and under mild condition. However, it is difficult to achieve efficient electron transfer and deep oxidation of biofuels simultaneously in a single-enzyme catalytic system. Herein, we report a hybrid catalyst cascade consisting of an organic oxidation catalyst, 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO), and an enzyme, glucose oxidase (GOx), for electrochemical oxidation of glucose. It is found that TEMPO is capable of mediating electron transfer between the redox center of GOx and the electrode surface. While glucose can be oxidized into glucuronic acid under neutral conditions. Thus, combining GOx and TEMPO, we are able to achieve 4e(-) electrooxidation of glucose using the hybrid enzymatic and organic cascade (HEOC) system. When coupled with an air-breathing Pt cathode, the resulting glucose/air biofuel cell using the proposed HEOC anode exhibits a maximum power density of 38.1 mu W cm(-2) with a short-circuit current of 651.4 mu A cm(-2), which can be attributed to the enhanced energetic efficiency, enabling TEMPO a promising catalyst for glucose oxidation in bioelectronics applications. (C) 2021 Published by Elsevier B.V.
查看更多>>摘要:At present, carcinoembryonic antigen (CEA) is considered a broad-spectrum cancer biomarker, and its accurate analysis in clinical samples can assist early cancer diagnosis and treatment. Herein, a novel electrochemical aptasensor has been proposed for CEA detection based on exonuclease III and hybrid chain reaction. The target CEA specifically binds to the aptamer region in hairpin probe 1 (defined as H1) by strong attraction, which leads the rest of the H1 triggering catalytic hairpin assembly to form a high quantity of H1 and hairpin probe 2 (defined as H2) double chain complex (denoted as H1@H2). Subsequently, the exonuclease III digests the complex of H1@H2 and liberates H1 to induce the first signal amplification. Simultaneously, a large number of generated trigger chains initiate a hybrid chain reaction and produce a second signal amplification. This proposed sensor exhibited excellent analytical performance for the detection of CEA, with wide linear range from 10 pg.mL(-1) to 100 ng.mL(-1) and low limit of detection of 0.84 pg.mL(-1). Additionally, the biosensing strategy was successfully verified for direct measurement of CEA in human serum. Therefore, this elaborated sensor provides a new simple method for detecting CEA and exhibits great promise in the early screening of cancer. (C) 2021 Elsevier B.V. All rights reserved.
查看更多>>摘要:The influence of D-cysteine (D-cys) on the microbiologically influenced corrosion (MIC) of 304 stainless steel caused by Pseudomonas aeruginosa was investigated in this work. Immersion tests in the sterile and P. aeruginosa-inoculated culture media with different D-cys concentrations were carried out. The results showed that the addition of D-cys inhibited the formation of P. aeruginosa biofilms on stainless steel surfaces. D-cys itself did not affect the corrosion of stainless steel but could decrease the corrosion rate of MIC of stainless steel caused by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) analysis and scanning electrochemical microscopy (SECM) analysis indicated that the biofilm inhibition effect of D-cys greatly reduced the destructive effect of the adhered P. aeruginosa cells on the passive film of the stainless steel, thus inhibiting the MIC of the stainless steel. (c) 2021 Elsevier B.V. All rights reserved.
查看更多>>摘要:Prolactin (PRL) is produced by the pituitary gland and plays a vital role in the production of milk after a baby is born. PRL levels are normally elevated in pregnant and nursing women, and high levels of PRL in the human body cause hyperprolactinemia, infertility, galactorrhea, infrequent or irregular periods, amenorrhea, breast pain, and loss of libido. Accordingly, herein, a novel label-free immunosensor using a bismuth sulfide/polypyrrole (Bi2S3/PPy)-modified screen-printed electrode (SPE) for the fast and facile detection of the peptide hormone PRL. Bi2S3 nanorods were synthesized via a facile hydrothermal technique, and PPy was prepared by chemical polymerization method. Subsequently, the Bi2S3/PPy/SPE was modified with 3-mercaptopropionic acid (MPA) and EDC/NHS. Owing to the cross-linking effect of EDC/NHS, antibody-PRL (anti-PRL) was firmly stabilized on the modified SPE surface. These layer-by-layer modifications enhanced the conducting properties, anti-PRL loading capacity, and sensitivity of the developed immunosensor. Under optimized conditions, the PRL immunosensor demonstrated a broad linear range of approximately 1-250 ng/mL, a low detection limit of approximately 0.130 ng/mL (3 x SD/b), good specificity, reproducibility, and stability. PRL was successfully evaluated in human and mouse serum samples, and the corresponding outcomes were compared with those of the electrochemical and ELISA methods. (C) 2021 Elsevier B.V. All rights reserved.
Balantic, KatjaWeiss, Victor U.Allmaier, GuenterKramar, Peter...
7页
查看更多>>摘要:Ion attachment can modify stability and structure of phospholipid bilayers. Of particular importance is the interaction of phospholipids with divalent cations, such as calcium ions playing an important role in numerous cellular processes. The aim of our study was to determine effects of calcium ions on phospholipid membranes employing two cell membrane analogues, liposomes and planar lipid bilayers, and for the first time the combination of two instrumental setups: gas-phase electrophoresis (nES GEMMA instrumentation) and electrical (capacitance and resistance) measurements. Liposomes and planar lipid bilayers consisted of phosphatidylcholine, cholesterol and phosphatidylethanolamine. Liposomes were prepared from dried lipid films via hydration while planar lipid bilayers were formed using a Mueller-Rudin method. Calcium ions were added to membranes from higher concentrated stock solutions. Changes in phospholipid bilayer properties due to calcium presence were observed for both studied cell membrane analogues. Changes in liposome size were observed, which might either be related to tighter packing of phospholipids in the bilayer or local distortions of the membrane. Likewise, a measurable change in planar lipid bilayer resistance and capacitance was observed in the presence of calcium ions, which can be due to an increased rigidity and tighter packing of the lipid molecules in the bilayer. (c) 2021 Elsevier B.V. All rights reserved.
Zamzami, Mazin A.Rabbani, GulamAhmad, AbrarBasalah, Ahmad A....
11页
查看更多>>摘要:The large-scale diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important for traceability and treatment during pandemic outbreaks. We developed a fast (2-3 min), easy-to-use, low-cost, and quantitative electrochemical biosensor based on carbon nanotube field-effect transistor (CNT-FET) that allows digital detection of the SARS-CoV-2 S1 in fortifited saliva samples for quick and accurate detection of SARS-CoV-2 S1 antigens. The biosensor was developed on a Si/SiO2 surface by CNT printing with the immobilization of a anti-SARS-CoV-2 S1. SARS-CoV-2 S1 antibody was immobilized on the CNT surface between the S-D channel area using a linker 1-pyrenebutanoic acid succinimidyl ester (PBASE) through non-covalent interaction. A commercial SARS-CoV-2 S1 antigen was used to characterize the electrical output of the CNT-FET biosensor. The SARS-CoV-2 S1 antigen in the 10 mM AA buffer pH 6.0 was effectively detected by the CNT-FET biosensor at concentrations from 0.1 fg/mL to 5.0 pg/mL. The limit of detection (LOD) of the developed CNT-FET biosensor was 4.12 fg/mL. The selectivity test was per-formed by using target SARS-CoV-2 S1 and non-target SARS-CoV-1 S1 and MERS-CoV S1 antigens in the 10 mM AA buffer pH 6.0. The biosensor showed high selectivity (no response to SARS-CoV-1 S1 or MERS-CoV S1 antigen) with SARS-CoV-2 S1 antigen detection in the 10 mM AA buffer pH 6.0. The biosensor is highly sensitive, saves time, and could be a helpful platform for rapid detection of SARS-CoV-2 S1 antigen from the patients saliva. (C) 2021 The Authors. Published by Elsevier B.V.
查看更多>>摘要:Biocorrosion of Cu remains a significant challenge in marine engineering but the mechanism is still not clear. The nutrients in marine environment affect the microbe's growth and the formation of biofilm, and then affect biocorrosion of metal to a large extent. In this study, the effect of NO3- concentration in Pseudomonas aeruginosa (P. aeruginosa) medium on the formation of extracellular polymer substance (EPS) film and biocorrosion of Cu were studied. The experiments results showed that limiting NO3- in culture medium triggered increased EPS film but decreased biocorrosion of Cu induced by P. aeruginosa. With increase of NO3- content in the culture medium, the Cu surface attached less polysaccharides and proteins, but the Cu corrosion rate was accelerated. The weight loss of Cu and the maximum pit depth were both increased with increase of NO3- content. The XPS and XRD analyses indicated that the major corrosion product is Cu2O. The increased corrosion rate with increase of the NO3- level were attributed to the EET-MIC route, the formation of Cu(NH3)(2)(+), and the more loose EPS film. (C) 2021 Elsevier B.V. All rights reserved.