查看更多>>摘要:Inspired by the increasingly mature vehicle-to-everything (V2X) communication technology, we propose a multihop V2X downlink transmission system to improve users' quality of experience (QoE) in hot spots. Specifically, we develop a cross-layer resource allocation algorithm to optimize the long-term system performance while guaranteeing the stability of data queues. Lyapunov optimization is employed to transform the long-term optimization problem into a series of instantaneous subproblems, which involves the joint optimization of rate control, power allocation, and mobile relay selection at each time slot. On one hand, the optimization of rate control is decoupled and carried out independently. On the other hand, a low-complexity pricing-based stable matching algorithm is proposed to solve the joint power allocation and mobile relay selection problem. Finally, simulation results demonstrate that the proposed algorithm can achieve superior performance and simultaneously guarantee queue stability.
查看更多>>摘要:The Internet of Things (IoT) has been envisaged to describe a number of technologies and research disciplines that enable global connectivity over the worldwide physical objects. Enabling technologies like Radio-Frequency Identification (RFID), sensor networks, biometrics, and nanotechnologies are now becoming very common, bringing the IoT into real implementations addressing varying applications, including smart grid, e-health, and intelligent transportation. They foreshadow an exciting future that closely interconnects our physical world via green networks. Green networks in IoT will contribute to reducing emissions and pollutions, exploiting environmental conservation and surveillance, and minimizing operational costs and power consumption.
查看更多>>摘要:By exploiting the sparsity of the channel in the delay and angle domains, compressed sensing (CS) algorithms can be used for channel estimation of massive multiple-input multiple-output (MIMO) systems to reduce pilot overhead. Due to the Doppler frequency shift, however, the intercarrier interference (ICI) and the rapid change of the channel state result in the poor estimation effect of doubly selective (DS) channel. In this paper, we propose the block sparsity adaptive matching pursuit (B-SAMP) algorithm to solve this problem. Firstly, the complex exponential basis expansion model (CE-BEM) is used to convert numerous channel tap coefficients into BEM parameter vectors and then the sparsity adaptive channel estimation scheme based on compressed sensing is proposed. Specifically, the ICI-free model is obtained by using the proposed equally placed pilot group scheme, and the B-SAMP algorithm is proposed by using the spatio-temporal common sparsity of the channel to complete the estimation of DS channel. Finally, a linear smoothing method is used to reduce the error caused by CE-BEM, thereby further improving the accuracy of the estimation. The simulation results show that the proposed method not only improves the estimation accuracy compared with the existing scheme but also requires fewer pilots.
查看更多>>摘要:At present, to improve the accuracy and performance for personalized recommendation in mobile wireless networks, deep learning has been widely concerned and employed with social and mobile trajectory big data. However, it is still challenging to implement increasingly complex personalized recommendation applications over big data. In view of this challenge, a hybrid recommendation framework, i.e., deep CNN-assisted personalized recommendation, named DCAPR, is proposed for mobile users. Technically, DCAPR integrates multisource heterogeneous data through convolutional neural network, as well as inputs various features, including image features, text semantic features, and mobile social user trajectories, to construct a deep prediction model. Specifically, we acquire the location information and moving trajectory sequence in the mobile wireless network first. Then, the similarity of users is calculated according to the sequence of moving trajectories to pick the neighboring users. Furthermore, we recommend the potential visiting locations for mobile users through the deep learning CNN network with the social and mobile trajectory big data. Finally, a real-word large-scale dataset, collected from Gowalla, is leveraged to verify the accuracy and effectiveness of our proposed DCAPR model.
查看更多>>摘要:Disaster is an uncertain phenomenon that arises due to natural as well as man-made calamities. Disaster often causes a high degree of destruction, especially in a very densely populated region. To handle such a situation, efficient resource management strategies are required. Resource management is the most crucial phase of disaster management. Efficient and in-time allocation of resources is very important; otherwise, it may result in more fatalities. In this context, we propose the resource management algorithm, which deals with both over- and underdemand for resources. Resource management requires efficient resource allocation, and in case of overdemand for resources, it must be followed by resource scheduling. In this paper, we introduce a resource allocation technique which is based on multiple objectives having a different set of constraints. We also propose the resource scheduling algorithm based on various parameters. The proposed algorithm uses multiobjective theory for resource allocation which is followed by the implementation of priority-based scheduling technique, in the case of overdemand for resources. Our proposed methods are compared to the existing approaches in the literature. From the simulation results, it is clear that our methods perform optimum resource allocation and scheduling operations.
Martin KlapezCarlo Augusto GraziaMaurizio CasoniSimone Zennaro...
13页
查看更多>>摘要:A Seismic Alert System (SAS), also called Earthquake Warning System (EWS) or Earthquake Early Warning System (EEW or EEWS), represents one of the most important measures that can be taken to prevent and minimize earthquake damage. These systems are mainly used to detect P-waves and the faster seismic waves and to subsequently trigger an alarm about the incoming S-waves, the slower and most dangerous seismic waves. In some cases, distributed systems are also able to alert some locations before the impending P-waves strike them. This paper presents Earthcloud, a cloud-based SAS that aims to provide all the former capabilities while retaining financial accessibility. Earthcloud first results, generated from four months of data acquisition, are compared with those coming from other systems. In particular, the paper focuses on processing and communication delays, showing how the Earthcloud new detection strategy may minimize delays. Although a thorough test campaign with more sensor nodes is needed to assess performance reliably, especially for highly dense urban scenarios, initial results are promising, with total latencies for Earthcloud always kept under the 1-second mark, despite being at the expense of solid magnitude estimation.
Minh-Quang TranDuy Tai NguyenVan An LeDuc Hai Nguyen...
17页
查看更多>>摘要:Fog computing is one of the promising technologies for realizing global-scale Internet of Things (IoT) applications as it allows moving compute and storage resources closer to IoT devices, where data is generated, in order to solve the limitations in cloud-based technologies such as communication delay, network load, energy consumption, and operational cost. However, this technology is still in its infancy stage containing essential research challenges. For instance, what is a suitable fog computing scheme where effective service provision models can be deployed is still an open question. This paper proposes a novel multitier fog computing architecture that supports IoT service provisioning. Concretely, a solid service placement mechanism that optimizes service decentralization on fog landscape leveraging context-aware information such as location, response time, and resource consumption of services has been devised. The proposed approach optimally utilizes virtual resources available on the network edges to improve the performance of IoT services in terms of response time, energy, and cost reduction. The experimental results from both simulated data and use cases from service deployments in real-world applications, namely, the intelligent transportation system (ITS) in Ho Chi Minh City, show the effectiveness of the proposed solution in terms of maximizing fog device utilization while reducing latency, energy consumption, network load, and operational cost. The results confirm the robustness of the proposed scheme revealing its capability to maximize the IoT potential.
Tuyen T. HoangLinh T. HoangVu X. PhanChuyen T. Nguyen...
11页
查看更多>>摘要:This paper investigates the issue of missing-tag event detection in practical radio frequency identification (RFID) systems with the presence of not only unexpected tags but also the detection error. Among all the previous works, the recently proposed protocol "RFID monitoring with UNexpected tags (RUN)" is one of the first studies taking the unexpected tags into account. The protocol is proven to outperform conventional ones in terms of achieving a required reliability. Nevertheless, it completely ignores the effect of the so-called detection error, which is a common phenomenon in the literature of RFID, on tag reading. The phenomenon might result in the false-alarm detection of the event and it is believed that RUN is no longer efficient and reliable. We therefore propose two modified versions of the RUN protocol, namely, mRUN1 and mRUN2, as solutions for the issue. Similarly to RUN, the protocols execute multiple Aloha reading rounds to cope with the unexpected tags. On the other hand, they utilize tracking counters supposedly available at the reader to mitigate the effect of the detection error. While mRUN1 requires many counters to monitor the existence of each expected tag (the tag's identity is already known), mRUN2 uses only one counter to deal with the event caused by either real missing tags or the detection error. Performance analysis will be investigated to find optimal parameter settings for the protocols. Computer simulation results are also provided to validate our analysis as well as to show the merit of the proposed protocols in comparison with the conventional protocols.
查看更多>>摘要:The shared storage is essential in the decentralized system. A straightforward storage model with guaranteed privacy protection on the peer-to-peer network is a challenge in the blockchain technology. The decentralized storage system should provide the privacy for the parties since it contains numerous data that are sensitive and dangerous if misused by maliciously. In this paper, we present a model for shared storage on a blockchain network which allows the authorized parties to access the data on storage without having to reveal their identity. Ring signatures combined with several protocols are implemented to disguise the signer identity thereby the observer is unlikely to determine the identity of the parties. We apply our proposed scheme in the healthcare domain, namely, decentralized personal health information (PHI). In addition, we present a dilemma to improve performance in a decentralized system.
Scott C. BurleighTomaso De ColaSimone MorosiSara Jayousi...
17页
查看更多>>摘要:Recently, the availability of innovative and affordable COTS (Commercial Off-The-Shelf) technological solutions and the ever-improving results of microelectronics and microsystems technologies have enabled the design of ever smaller yet ever more powerful satellites. The emergence of very capable small satellites heralds an era of new opportunities in the commercial space market. Initially applied only to scientific missions, Earth observation and remote sensing, small satellites are now being deployed to support telecommunications services. This review paper examines the operational features of small satellites that contribute to their success. An overview of recent advances and development trends in the field of small satellites is provided, with a special focus on telecommunication aspects such as the use of higher frequency bands, optical communications, new protocols, and advanced architectures.