查看更多>>摘要:In this paper, a localization scenario that the home base station (BS) measures time of arrival (TOA) and angle of arrival (AOA) while the neighboring BSs only measure TOA is investigated. In order to reduce the effect of non-line of sight (NLOS) propagation, the probability weighting localization algorithm based on NLOS identification is proposed. The proposed algorithm divides these range and angle measurements into different combinations. For each combination, a statistic whose distribution is chi-square in LOS propagation is constructed, and the corresponding theoretic threshold is derived to identify each combination whether it is LOS or NLOS propagation. Further, if those combinations are decided as LOS propagation, the corresponding probabilities are derived to weigh the accepted combinations. Simulation results demonstrate that our proposed algorithm can provide better performance than conventional algorithms in different NLOS environments. In addition, computational complexity of our proposed algorithm is analyzed and compared.
查看更多>>摘要:In a modern world there is a growing demand for localization services of various kinds. Position estimation can be realized via cellular networks, especially in the currently widely deployed LTE (Long Term Evolution) networks. However, it is not an easy task in harsh propagation conditions which often occur in dense urban environments. Recently, time-methods of terminal localization within the network have been the focus of attention, with the OTDoA (Observed Time Difference of Arrival) method in particular. One of the main factors influencing the accuracy of location estimation in the OTDoA method is the nature of the propagation channel that affects the ease of isolating the signal component travelling from the transmitter to the receiver through the shortest path. To obtain the smallest possible localization error, it is necessary to detect the first received component of the useful signal. This aim could be achieved by using a proper algorithm within the receiver. This paper proposes a new algorithm for effective detecting of the first component of the LTE downlink signal in the multipath environment. In a mobile terminal location estimation process, CSRS (Cell Specific Reference Signal) signals were used instead of dedicated PRS (Positioning Reference Signal) signals. New solution was verified during the measurement campaign in a real LTE network.
查看更多>>摘要:Public safety organizations around the world started migrating toward Long-Term Evolution (LTE) networks to support the increasing needs for video and data. To address the unique voice communication requirements of first responders, the 3rd Generation Partnership Project (3GPP) introduced new capabilities that aim at providing similar functionalities as the traditional Land Mobile Radio (LMR) systems, namely, Direct Mode communication and mission critical push-to-talk (MCPTT). Direct Mode communication, also called Proximity Services (ProSe), allows public safety users to communicate directly with each other regardless of the network status. MCPTT was the first mission critical service, and first application, standardized by 3GPP to provide both on- and off-network voice capability. Assessing the performance of those capabilities is critical to accelerate their deployment and adoption by first responders. In this study, we evaluate the performance of an off-network mode MCPTT device over ProSe by focusing on the access time, a measure of the delay incurred before a user can talk. We develop analytical models for various types of calls and verify the accuracy of the predicted access time using ns-3 simulations. We perform sensitivity analysis to show the validity of the models for various scenarios. Finally, we show how the models can be used to guide parameter configuration for both MCPTT and ProSe to optimize the performance.
Jo UeyamaLeandro A. VillasJose R. Torres NetoGeraldo P. Rocha Filho...
13页
查看更多>>摘要:The growth in many countries of the population in need of healthcare and with reduced mobility in many countries shows the demand for the development of assistive technologies to cater for this public, especially when they require home treatment after being discharged from the hospital. To this end, interactive applications on mobile devices are often integrated into intelligent environments. Such environments usually have limited resources, which are not capable of processing great volumes of data and can expend much energy due to devices being in communication to a cloud. Some approaches have tried to minimize these problems by using fog microdatacenter networks to provide high computational capabilities. However, full outsourcing of the data analysis to a microfog can generate a reduced level of accuracy and adaptability. In this work, we propose a healthcare system that uses data offloading to increase performance in an IoT-based microfog, providing resources and improving health monitoring. The main challenge of the proposed system is to provide high data processing with low latency in an environment with limited resources. Therefore, the main contribution of this work is to design an offloading algorithm to ensure resource provision in a microfog and synchronize the complexity of data processing through a healthcare environment architecture. We validated and evaluated the system using two interactive applications of individualized monitoring: (1) recognition of people using images and (2) fall detection using the combination of sensors (accelerometer and gyroscope) on a smartwatch and smartphone. Our system improves by 54% and 15% on the processing time of the user recognition and Fall Decision applications, respectively. In addition, it showed promising results, notably (a) high accuracy in identifying individuals, as well as detecting their mobility; and (b) efficiency when implemented in devices with scarce resources.
查看更多>>摘要:Energy efficiency (EE) maximization problem for Cognitive Underwater Acoustic Network is investigated in this study. Available works on EE usually assume that spectrum sensing is accurate or that channel state information (CSI) is perfect, which is often impractical. Thus, an adaptive resource allocation scheme is proposed to maximize the EE, subject to the transmission power constraint of secondary user (SU) and the interference power constraint of primary user (PU). By taking the spectrum sensing errors into account, we add power interference from PU to SU in the objective function. Besides, interference tolerance factor is introduced to control the interference from SU to PU. Assuming CSI uncertainties of the involved channels are bounded, they are separately modeled as stochastic-case or worst-case according to their nature. Since the established optimization problem is nonconvex, it is converted into a convex one and then solved by the techniques of fractional programming and dual decomposition. Simulation results validate that the EE can be improved by classifying the CSI uncertainties and solving the expectation of the CSI correlation function. Furthermore, the interference from SU to PU can be controlled well by the adjustment of the interference tolerance factor.
查看更多>>摘要:Scalability and the highly dynamic topology of Vehicular Ad Hoc Networks (VANETs) are the biggest challenges that slow the roll-out of such a promising technology. Adopting an effective VANET clustering algorithm can tackle these issues in addition to benefiting routing, security and media access management. In this paper, we propose a general-purpose resilient double-head clustering (DHC) algorithm for VANET. Our proposed approach is a mobility-based clustering algorithm that exploits the most relevant mobility metrics such as vehicle speed, position, and direction, in addition to other metrics related to the communication link quality such as the link expiration time (LET) and the signal-to-noise ratio (SNR). The proposed algorithm has enhanced performance and stability features, especially during the cluster maintenance phase, through a set of procedures developed to achieve these objectives. An extensive evaluation methodology is followed to validate DHC and compare its performance with another algorithm using different existing and newly proposed evaluation metrics. These metrics are analyzed under various mobility scenarios, vehicle densities, and radio channel models such as log-normal shadowing and two-ray ground loss with and without Nakagami-m fading model. The proposed algorithm DHC has proven its ability to be more stable and efficient under different simulation scenarios.
Anna Lina RuscelliGabriele CecchettiPiero Castoldi
23页
查看更多>>摘要:The spreading diffusion of wireless devices and the crowded coexistence of multimedia applications greedy of bandwidth and with strict requirements stress the service provisioning offered by wireless technologies. WiFi is a reference for wireless connectivity and it requires a continuous evolution of its mechanism in order to follow increasingly demanding service needs. In particular, despite the evolution of physical layer, some critical contexts, such as industrial networks, telemedicine, telerehabilitation, and virtual training, require further refined improvements in order to ensure the respect of strict real-time service requirements. In this paper an in-depth analysis of Dynamic TXOP HCCA (DTH) MAC enhanced centralized scheduler is illustrated and it is further refined introducing a new improvement, DTH with threshold. DTH and DTH with threshold can be integrated with preexisting centralized schedulers in order to improve their performances, without any overprovisioning that can negatively impact on the admission control feasibility test. Indeed, without modifying the centralized scheduler policy, they combine together the concepts of reclaiming transmission time and statistical estimation of the traffic profile in order to provide, at each polling, an instantaneous transmission time tailored to the variable traffic requirements, increasing, when necessary, the service data rate. These mechanisms can coexist with advanced physical layer-based solutions, providing the required service differentiation. Experimental results and theoretical analysis, based on elastic scheduler theory, show that they are effective especially in the case of Variable Bit Rate traffic streams in terms of transmission queues length, packets loss, delay, and throughput.
查看更多>>摘要:Differential Evolution (abbreviation for DE) is showing many advantages in solving optimization problems, such as fast convergence, strong robustness, and so on. However, when DE faces a complex target space, the diversity of its population will degenerate in a small scope; even sometimes it is premature to fall into the local minimum. All things contend in beauty in the world; a Shuffled Frog Leaping Algorithm (abbreviation for SFLA) has a strong global ability; unfortunately, its convergence speed is also slow. In order to overcome the shortcoming, this article suggests a Shuffled Frog-leaping Differential Evolution (abbreviation for SFDE) algorithm in a cognitive radio network, which combines Differential Evolution with Shuffled Frog Leaping Algorithm. This proposed method hikes its local searching for a certain number of subgroups, and their individuals join together and share their mutual information among different subgroups, which improves the population diversity and achieves the purpose of fast global search during the whole Differential Evolution. The SFDE is examined by 20 well-known numerical benchmark functions, and those obtained results are compared with four other related algorithms. The experimental simulation in solving the problem of effective throughput optimization for cognitive users shows that the proposed SFDE is effective.
查看更多>>摘要:As the Internet of Vehicle (IOV) being widely applied throughout our daily life, how to secure data privacy of each vehicle is nowadays a hot topic. Taking an aim of solving this problem, a privacy protection system on double-layered chain basis is designed to eliminate the said security risk during vehicle data communication. At the same time, the nontampering nature of the block chain is used to realize reasonable arbitration in traffic accident disputes, vehicle insurance claims, and other states of affairs. Specifically, an IOV double-layered chain model is constructed to simulate a semicentralized system that is convenient for government to supervise; also, a RSA protocol based on zero-knowledge proof (ZKP) is designed to bring safety and zero-knowledge property to the system; finally, we give the application scenario of this IOV privacy protection system based on double-layered chain that it can be widely used in vehicle-sharing industry. The communication costs, respectively, under double-layered chain and single-layered chain frameworks, are compared to prove that the double-layered structure does save cost. Thus an IOV privacy scheme that is safer and more cost-efficient is given.
查看更多>>摘要:Social Internet of Things (SIoT) is a control paradigm by the integration of social networking concepts into the Internet of Things, and Fog Computing (FC) is an emerging technology that is aimed at moving the cloud computing facilities to the access network. Recently, the SIoT and FC models are combined by using complementary features, and a new Social Fog IoT (SFIoT) paradigm has been developed. In this paper, we design novel resource allocation algorithms for the SFIoT system. Considering the social relationship and each preference, mobile devices in the SFIoT effectively share the limited computation and communication resources of FC operators. To formulate the interaction among mobile devices and FC operator, we adopt the basic concept of two game models: voting and bargaining games. Bicooperative voting approach can make control decisions for the resource allocation method, and Nash bargaining solution is used to effectively distribute the computation resource to different application tasks. Based on the two-phase game model, the proposed scheme takes various benefits in a fair-efficient way. Through the extensive simulation experiments, we can validate the superiority of our proposed approach by the fact that it produces a mutually acceptable agreement among game players and significantly outperforms the existing protocols. Last, we point out the further challenges and future research issues about the SFIoT paradigm opportunities.