首页期刊导航|Wireless communications & mobile computing
期刊信息/Journal information
Wireless communications & mobile computing
John Wiley & Sons
Wireless communications & mobile computing

John Wiley & Sons

1530-8669

Wireless communications & mobile computing/Journal Wireless communications & mobile computingISTPSCI
正式出版
收录年代

    An NFV-Based Energy Scheduling Algorithm for a 5G Enabled Fleet of Programmable Unmanned Aerial Vehicles

    Christian TipantunaXavier HesselbachVictor Sanchez-AgueroFrancisco Valera...
    20页
    查看更多>>摘要:The fifth generation of mobile networks (5G) is expected to provide diverse and stringent improvements such as greater connectivity, bandwidth, throughput, availability, improved coverage, and lower latency. Considering this, drones or Unmanned Aerial Vehicles (UAVs) and Internet of Things (IoT) devices are perfect examples of existing technology that can take advantage of the capabilities provided by 5G technology. In particular, UAVs are expected to be an important component of 5G networks implementations and support different communication requirements and applications. UAVs working together with 5G can potentially facilitate the deployment of standalone or complementary communications infrastructures, and, due to its rapid deployment, these solutions are suitable candidates to provide network services in emergency scenarios, natural disasters, and search and rescue missions. An important consideration in the deployment of a programmable drone fleet is to guarantee the reliability and performance of the services through consistent monitoring, control, and management scheme. In this regard, the Network Functions Virtualization (NFV) paradigm, a key technology within the 5G ecosystem, can be used to perform automation, management, and orchestration tasks. In addition, to ensure the coordination and reliability in the communications systems, considering that the UAVs have a finite lifetime and that eventually they must be replaced, a scheduling scheme is needed to guarantee the availability of services and efficient resource utilization. To this end, in this paper is presented an UAV scheduling scheme which leverages the potential offered by NFV. The proposed strategy, based on a brute-force search combinatorial algorithm, allows obtaining the optimal scheduling of UAVs in time, in order to efficiently deploy network services. Simulation results validate the performance of the proposed strategy, by providing the number of drones needed to meet certain levels of service availability. Furthermore, the strategy allows knowing the sequence of replacement of UAVs to ensure the optimal resource utilization.

    A Selective Mirrored Task Based Fault Tolerance Mechanism for Big Data Application Using Cloud

    Hao WuQinggeng JinChenghua ZhangHe Guo...
    12页
    查看更多>>摘要:With the wide deployment of cloud computing in big data processing and the growing scale of big data application, managing reliability of resources becomes a critical issue. Unfortunately, due to the highly intricate directed-acyclic-graph (DAG) based application and the flexible usage of processors (virtual machines) in cloud platform, the existing fault tolerant approaches are inefficient to strike a balance between the parallelism and the topology of the DAG-based application while using the processors, which causes a longer makespan for an application and consumes more processor time (computation cost). To address these issues, this paper presents a novel fault tolerant framework named Fault Tolerance Algorithm using Selective Mirrored Tasks Method (FAUSIT) for the fault tolerance of running a big data application on cloud. First, we provide comprehensive theoretical analyses on how to improve the performance of fault tolerance for running a single task on a processor. Second, considering the balance between the parallelism and the topology of an application, we present a selective mirrored task method. Finally, by employing the selective mirrored task method, the FAUSIT is designed to improve the fault tolerance for DAG based application and incorporates two important objects: minimizing the makespan and the computation cost. Our solution approach is evaluated through rigorous performance evaluation study using real-word workflows, and the results show that the proposed FAUSIT approach outperforms existing algorithms in terms of makespan and computation cost.

    SignRank: A Novel Random Walking Based Ranking Algorithm in Signed Networks

    Cong WanYanhui FangCong WangYanxia Lv...
    8页
    查看更多>>摘要:Social networks have become an indispensable part of modern life. Signed networks, a class of social network with positive and negative edges, are becoming increasingly important. Many social networks have adopted the use of signed networks to model like (trust) or dislike (distrust) relationships. Consequently, how to rank nodes from positive and negative views has become an open issue of social network data mining. Traditional ranking algorithms usually separate the signed network into positive and negative graphs so as to rank positive and negative scores separately. However, much global information of signed network gets lost during the use of such methods, e.g., the influence of a friend's enemy. In this paper, we propose a novel ranking algorithm that computes a positive score and a negative score for each node in a signed network. We introduce a random walking model for signed network which considers the walker has a negative or positive emotion. The steady state probability of the walker visiting a node with negative or positive emotion represents the positive score or negative score. In order to evaluate our algorithm, we use it to solve sign prediction problem, and the result shows that our algorithm has a higher prediction accuracy compared with some well-known ranking algorithms.

    Cooperative Closed-Loop Coded-MIMO Transmissions for Smart Grid Wireless Applications

    Ndeye Bineta SarrOlufemi J. OyedapoBasile L. AgbaFrancois Gagnon...
    13页
    查看更多>>摘要:Inherent interfering signals generated by the underlying elements found in power substations have been known to span over consecutive noise samples, resulting in bursty interfering noise samples. In the impulsive noise environments, we elaborate a space-sensitive technique using multiple-input multiple-output (MIMO), which is particularly well suited in these usually very difficult situations. We assume the availability of channel state information (CSI) at the transmitter to achieve typical MIMO system gains in ad hoc mode. In this paper, we show that more than 10 dB gains are obtained with the most efficient system that we propose for achieving smart grid application requirements. On the one hand, the results obviously illustrate that the max - d_(min) precoder associated with the rank metric coding scheme is especially adapted to minimize the bit error rate (BER) when a maximum likelihood (ML) receiver is employed. On the other hand, it is shown that a novel node selection technique can reduce the required nodes transmission energies.

    Machine Learning Based Antenna Design for Physical Layer Security in Ambient Backscatter Communications

    Cong LiuMichel KadochTao Hong
    10页
    查看更多>>摘要:Ambient backscatter employs existing radio frequency (RF) signals in the environment to support sustainable and independent communications, thereby providing a new set of applications that promote the Internet of Things (IoT). However, nondirectional forms of communication are prone to information leakage. In order to ensure the security of the IoT communication system, in this paper, we propose a machine learning based antenna design scheme, which achieves directional communication from the relay tag to the receiving reader by combining patch antenna with log-periodic dual-dipole antenna (LPDA). A multiobjective genetic algorithm optimizes the antenna side lobe, gain, standing wave ratio, and return loss, with a goal of limiting the number of large side lobes and reduce the side lobe level (SLL). The simulation results demonstrate that our proposed antenna design is well suited for practical applications in physical layer security communication, where signal-to-noise ratio of the wiretap channel is reduced, communication quality of the main channel is ensured, and information leakage is prevented.

    Outage Analysis of User Pairing Algorithm for Full-Duplex Cellular Networks

    Hyun-Ho ChoiWonjong Noh
    12页
    查看更多>>摘要:In a full-duplex (FD) cellular network, a base station transmits data to the downlink (DL) user and receives data from uplink (UL) users at the same time; thereby the interference from UL users to DL users occurs. One of the possible solutions to reduce this interuser interference in the FD cellular network is user pairing, which pairs a DL user with a UL user so that they use the same radio resource at the same time. In this paper, we consider a user pairing problem to minimize outage probability and formulate it as a nonconvex optimization problem. As a solution, we design a low-complexity user pairing algorithm, which first controls the UL transmit power to minimize the interuser interference and then allows the DL user having a worse signal quality to choose first its UL user giving less interference to minimize the outage probability. Then, we perform theoretical outage analysis of the FD cellular network on the basis of stochastic geometry and analyze the performance of the user pairing algorithm. Results show that the proposed user pairing significantly decreases the interuser interference and thus improves the DL outage performance while satisfying the requirement of UL signal-to-interference-plus-noise ratio, compared to the conventional HD mode and a random pairing. We also reveal that there is a fundamental tradeoff between the DL outage and UL outage according to the user pairing strategy (e.g., throughput maximization or outage minimization) in the FD cellular network.

    A Heuristic Algorithm of Cooperative Agents Communication for Enhanced GAF Routing Protocol in WSNs

    Hanane AznaouiSaid RaghayYoussef OuakrimLayla Aziz...
    14页
    查看更多>>摘要:Rapid progress in technologies has led to the development of small sensor nodes. A wireless sensor network (WSN) is an interconnected collection of a large number of these small sensor nodes that is used to monitor and record the physical environment. WSNs have applications in diverse scenarios. They play an important role in tracking and monitoring in different domains, such as environmental research, military, and health care. In most of these applications, the WSN is composed of a large number of nodes deployed in an area of interest, and not all nodes are directly connected to the base station (BS). In some cases, batteries of nodes cannot be recharged or changed. For that, the most solution required to overcome these problems is to optimize energy consumed during communication. Data transmission in networks is maintained by routing protocols, which are responsible for discovering the required paths. This paper presents an improvement of the Geographic Adaptive Fidelity (GAF) routing protocol created on a smart actives node selection. The routing process works on cooperative agents communication where another node is activated in the same grid if the data collected are considered as important data, and a heuristic method is used to find an optimal path in terms of energy to transmit data collected until reaching the BS. Simulation results prove that the cooperative agents GAF (CAGAF) routing protocol proposed is more efficient compared to the basic version in terms of considering important data, energy consumed, and dead nodes.

    Broadcasting Directional Modulation Based on Random Frequency Diverse Array

    Jian XieBin QiuQiuping WangJiaqing Qu...
    11页
    查看更多>>摘要:Frequency diverse array- (FDA-) based directional modulation (DM) is a promising technique for physical layer security, due to its angle-range dependent transmit beampattern. However, the existing schemes are not suitable for the broadcasting scenario, where there are multiple legitimate users (LUs) to receive the confidential message. In this paper, we propose a novel random frequency diverse array- (RFDA-) based DM scheme to realize the point to multi-point broadcasting secure transmission in both angle and range dimension. In the first stage, the beamforming vector is designed to maximize the artificial noise (AN) power, while satisfying the power requirement of LUs for transmitting the confidential message simultaneously. In the second stage, the AN projection matrix is obtained by maximizing signal-to-interference-plus-noise ratio (SINR) at the LUs. The proposed scheme only broadcasts the confidential message to the locations of LUs while the other regions are covered by AN, which promotes the security of the wireless broadcasting system. Moreover, it is energy efficient since the power of each LU is under accurate control. Numerical simulations are presented to validate the performance of the proposed scheme.

    Energy-Efficient Broadcast Scheduling Algorithm in Duty-Cycled Multihop Wireless Networks

    Quan ChenTao WangLianglun ChengYongchao Tao...
    14页
    查看更多>>摘要:Broadcasting is a fundamental function for disseminating messages in multihop wireless networks. Minimum-Transmission Broadcasting (MTB) problem aims to find a broadcast schedule with minimum number of transmissions. Previous works on MTB in duty-cycled networks exploit a rigid assumption that nodes have only active time slot per working cycle. In this paper, we investigated the MTB problem in duty-cycled networks where nodes are allowed arbitrary active time slots per working cycle (MTBDCA problem). Firstly, it is proved to be NP-hard and o(ln Δ)-inapproximable, where Δ is the maximum degree in the network. Secondly, an auxiliary graph is proposed to integrate nodes' active time slots into the network and a novel covering problem is proposed to exploit nodes' multiple active time slots for scheduling. Then, a ln(Δ + 1)-approximation algorithm is proposed for MTBDCA and a (ln(Δ + 1) + Δ)-approximation algorithm is proposed for all-to-all MTBDCA. Finally, extensive experimental results demonstrate the efficiency of the proposed algorithm.

    Threat Assessment for Android Environment with Connectivity to IoT Devices from the Perspective of Situational Awareness

    Mookyu ParkJaehyeok HanHaengrok OhKyungho Lee...
    14页
    查看更多>>摘要:As smartphones such as mobile devices become popular, malicious attackers are choosing them as targets. The risk of attack is steadily increasing as most people store various personal information such as messages, contacts, and financial information on their smartphones. Particularly, the vulnerabilities of the installed operating systems (e.g., Android, iOS, etc.) are trading at a high price in the black market. In addition, the development of the Internet of Things (IoT) technology has created a hyperconnected society in which various devices are connected to one network. Therefore, the safety of the smartphone is becoming an important factor to remotely control these technologies. A typical attack method that threatens the security of such a smartphone is a method of inducing installation of a malicious application. However, most studies focus on the detection of malicious applications. This study suggests a method to evaluate threats to be installed in the Android OS environment in conjunction with machine learning algorithms. In addition, we present future direction from the cyber threat intelligence perspective and situational awareness, which are the recent issues.