Zakariah, MusaMolele, Reneilwe A.Mahdy, Mohammed A. A.Ibrahim, Mohammed I. A....
6页
查看更多>>摘要:Exposure to dibutyl phthalate (DBP) induces testicular damage in mammals. However, studies on the effects of DBP on spermatogenic cells in birds are grossly lacking. Therefore, this study was designed to determine the effects of the pre-pubertal exposure to DBP on the histology and ultrastructure of spermatogenic cells in the testis of adult Japanese quail (Coturnix coturnix japonica). The birds were randomly divided into five dosage groups at the age of 4 weeks. The control group received a corn oil vehicle only (a dose of 1 mL/kg body weight), while the other four experimental groups received a daily dosage of 10, 50, 200, 400 mg/kg body weight of DBP (dissolved in corn oil), respectively with the aid of gastric lavage, for 30 days. Testicular samples were processed and examined by light microscopy and transmission electron microscopy. Histopathological evaluation revealed vacuole formation, germ cell degenerations, and the absence of spermatogenic cell series. Ultrastructurally, chromatin clumps in spermatocyte and degenerated spermatogonia with ruptured nuclear membranes resting on the distorted basement membranes were observed. Others were intracytoplasmic vacuoles in round spermatids and fragments of dense apoptotic bodies. In conclusion, the findings of the present study reveal that spermatogenic cells of Japanese quails seem to be more sensitive to DBP-induced degeneration compared to mammalian species studied. The Japanese quail could be used to monitor environmental contamination with low doses of DBP.
查看更多>>摘要:In the last decades, the advancements of microscopes technology, together with the development of new imaging approaches, are trying to address some biological questions that have been unresolved in the past: the need to combine in the same analysis temporal, functional and morphological information on the biological sample has become pressing. For this reason, the use of correlative microscopy, in which two or more imaging techniques are combined in the same analysis, is getting increasingly widespread. In fact, correlative microscopy can overcome limitations of a single imaging method, giving access to a larger amount of information from the same specimen. However, correlative microscopy can be challenging, and appropriate protocols for sample preparation and imaging methods must be selected. Here we review the state of the art of correlating electron microscopy with different imaging methods, focusing on sample preparation, tools, and labeling methods, with the aim to provide a comprehensive guide for those scientists who are approaching the field of correlative methods.
查看更多>>摘要:Electrohydrodynamic techniques have been focus for the development of structures for encapsulation purposes. Their physico-chemical characteristics confer them significant benefits for food and nutraceutical applications. The study reports the optimization of zein microstructures (electrosprayed beads/electrospun fibers/films). The effect of zein polymer properties (viscosity and conductivity), flow rate, applied voltage and distance tipcollector were investigated. Results by scanning electron microscopy revealed the morphology observed with zein. The importance of chain entanglement for fibers/beads/films formation in the optimum conditions system was evaluated. Compact electrosprayed microbeads with diameters ranging from 0.9 mu m to 2.0 mu m were obtained for 5 wt.% zein solution. For 30 wt.% zein, uniform smooth electrospun fibers with diameters of approximately 0.60 to 0.75 mu m were produced. Films with different characteristics (with more or less homogeneous matrix and more or less bubbles) were also obtained. The developed zein microstructures are potential vectors that might encapsulate bioactive ingredients for functional food, nutraceutical and medical applications.
查看更多>>摘要:Microscopy, which is listed among the major in-situ imaging applications, allows to derive information from a biological sample on the existing architectural structures of cells and tissues and their changes over time. Large biological samples such as tumor spheroids cannot be imaged within one field of view, regional imaging in different areas and subsequent stitching are required to attain the full picture. Microscopy is not typically used to produce full-size visualization of tumor spheroids measuring a few millimeters in size. In this study, we propose a 3D volume imaging technique for tracing the growth of an entire tumor spheroid measuring up to 10 mm using a miniaturized optical (mini-Opto) tomography platform. We performed a primary analysis of the 3D imaging for the MIA PaCa-2 pancreatic tumoroid employing its 2D images produced with the mini-Opto tomography from different angles ranging from -25 degrees to +25 degrees at six different three-day-apart time points of consecutive image acquisition. These 2D images were reconstructed by using a 3D image reconstruction algorithm that we developed based on the algebraic reconstruction technique (ART). We were able to reconstruct the 3D images of the tumomid to achieve 800 x 800-pixel 50-layer images at resolutions of 5-25 mu m. We also created its 3D visuals to understand more clearly how its volume changed and how it looked over weeks. The volume of the tumor was calculated to be 6.761 mm(3) at the first imaging time point and 46.899 mm(3) 15 days after the first (at the sixth time point), which is 6.94 times larger in volume. The mini-Opto tomography can be considered more advantageous than commercial microscopy because it is portable, more cost-effective, and easier to use, and enables full-size visualization of biological samples measuring a few millimeters in size.
Torres-Ventura, H. H.Chanona-Perez, J. J.Dorantes-Alvarez, L.Cauich-Sanchez, P. I....
10页
查看更多>>摘要:Campylobacter jejuni is a pathogen bacterium that causes foodborne gastroenteritis in humans. However, phenolic compounds extracted from natural sources such as capsicum pepper plant (Capsicum annuum L. var. aviculare) could inhibit the growth of C. jejuni. Therefore, different extracts were prepared using ultrasonic extraction (USE), conventional extraction (CE) and thermosonic extraction (TSE). C. jejuni was then exposed to chili extracts to examine the antimicrobial effect and their growth/death bacterial kinetics were studied using different mathematical models. Atomic force microscopy was applied to investigate the microstructural and nano mechanical changes in the bacteria. Extracts obtained by TSE had the highest phenolic content (4.59 +/- 0.03 mg/g of chili fresh weight [FW]) in comparison to USE (4.12 +/- 0.05 mg/g of chili FW) and CE (4.28 +/- 0.07 mg/g of chili FW). The inactivation of C. jejuni was more efficient when thermosonic extract was used. The Gompertz model was the most suitable mathematical model to describe the inactivation kinetics of C. jejuni. Roughness and nanomechanical analysis performed by atomic force microscopy (AFM) provided evidence that the chili extracts had significant effects on morphology, surface, and the reduced Young's modulus of C. jejuni. The novelty of this work was integrating growth/death bacterial kinetics of C. jejuni using different mathematical models and chili extracts, and its relationship with the morphological, topographic and nanomechanical changes estimated by AFM.
Attias, MarciaVidal, Juliana C.Takata, Carmem S. A.Campaner, Marta...
9页
查看更多>>摘要:In Brazil, the Trypanosoma sp. 858 was isolated from a toad (Anura: Bufonidae: Rhinella ictericus) and successfully maintained in cultures. We previously demonstrated that this trypanosome is different but tightly clustered phylogenetically with other trypanosomes from anurans. In this study, we addressed the ultrastructural features of cultured epimastigotes of this new trypanosome. Our results showed very long and thin free motile forms exhibiting a long flagellum and remarkable large and loose K-DNA network. In addition, the anterior portion contained many acidocalcisomes and a well-developed spongiome tubules-contractile vacuole system. One of the main morphological features of this anuran trypanosome was the presence of a complex cytostome-cytopharynx with a specialized membrane coating at the entrance, which is often hidden by the flagellum. Other conspicuous features are the presence of lipid-like droplets, lamellar membrane limited inclusions, and one very large reservosome, all at the posterior portion of the cell body. This new trypanosome may constitute an excellent model for organelles studies related to endocytosis and lipid storage, as demonstrated herein using scanning and transmission electron microscopy and three-dimensional models obtained by either electron microscopy tomography or dual-beam slice and view series.
查看更多>>摘要:The fine structure of the larval eyes of the hangingfly Terrobittacus implicatus (Huang & Hua) was investigated using scanning and transmission electron microscopy. The results show that the larval eyes of T. implicatus each consist of seven spaced ommatidia. Each ommatidium is composed of a corneal lens with about 45 lamellae, a tetrapartite eucone type of crystalline cone, eight retinula cells, two primary pigment cells, and an undetermined number of secondary pigment cells. The rhabdomeres of eight retinula cells effectively fuse into a centrally-fused, tiered funnel-shaped rhabdom extending from the base of the crystalline cone deeply into the ommatidium. In light of different positions in the ommatidium, the retinula cells can be divided into four distal and four proximal retinula cells. Pigment cells envelop the entire ommatidium. Electron-lucent vesicles are abundant throughout the cytoplasm of the eight retinula cells. The larval ommatidia of T. implicatus are similar to those of the Panorpidae, except for the distal retinula cells that also participate in the formation of the proximal rhabdom. In this case, the larval eyes of T. implicatus may lie in the transitional stage during the larval eye evolution of insects from ommatidia to stemmata.
查看更多>>摘要:Anti-diatom testing is a basic method to evaluate the anti-fouling performance of coatings. Many existing results of anti-diatom performances are evaluated based on their attachment number or coverage area, ignoring the influence of the crawling and adhesion behavior of diatoms on the analysis results. Here, a Folium Sennae-like film with multiple structural units was prepared by considering the influence of diatom attachment behaviors on the analysis results. The anti-diatom performances of different parts (divided and called four parts: edge, surface, cross striation, and vertical pattern) on the Folium Sennae-like film were evaluated using the counting and area methods. Obviously, the anti-diatom performance of the Folium Sennae-like film was superior to that of epoxy resin without structure. Under equal areas, the average numbers of diatoms on the cross striation and the vertical pattern were similar to the surface. It was found that the attachment behavior of Halamphora sp. is affected by microstructure units, rather than the combined structure of which the scale is much larger than that of diatoms. Meanwhile, the average attachment area for the unit number of diatoms was calculated. The diatom attachment area without microstructure, surface, cross striation, or vertical pattern was 81.751, 106.950, 73.904, and 84.376 mu m(2), respectively. Moreover, the static and dynamic motion behaviors of Halamphora sp. were studied, and the theory for Halamphora sp. attachment was modeled in three dimensions. The variable morphology of Halamphora sp. lead to inaccurate results for diatom analyses based on the counting and area methods, which is summarized here. This study discusses the evaluation method of coatings by anti-diatom performance, further promoting the research of diatoms in the field of antifouling.