首页期刊导航|Agricultural Water Management
期刊信息/Journal information
Agricultural Water Management
Elsevier
Agricultural Water Management

Elsevier

0378-3774

Agricultural Water Management/Journal Agricultural Water ManagementSCIISTPEI
正式出版
收录年代

    Effects of residual film on maize root distribution, yield and water use efficiency in Northwest China

    Chen P.Gu X.Li Y.Fang H....
    9页
    查看更多>>摘要:? 2021 Elsevier B.V.With the extensive use of plastic film, a large number of residual film accumulated in the farmland, bringing a huge negative impact on agricultural production. Studying the effect of residual film on roots is helpful to understand the damage mechanism of residual film on crop growth. Thus, a two-year field experiment was conducted with 0 (M0), 90 (M90), 180 (M180), 360 (M360), and 720 (M720) kg ha?1 residual film, and sine and logistic functions were used to simulate root growth and vertical distribution of maize. Results showed that root length decreased with residual film increasing and was more sensitive to residual film at tasseling, filling and maturity stages than at seedling and jointing stages. The results of the sine function fitting the total root length showed that the potential maximum root length was decreased and the rooting time was delayed, and the root growth time was shortened with the amount of residual film increasing. M90 had no significant effect on root length but residual film equal to or greater than 180 kg ha?1 had significant negative effects on root length. M180, M360 and M720 significantly reduced the actual total root length by 13.7%, 23.8% and 33.3%, and reduced the potential root length by 9.4%, 17.1% and 21.8%. M360 and M720 significantly shortened the growth time by 3.8% and 6.6%. The logistic function fit the vertical root distribution well. Residual film decreased the root length in deep soil and gathered roots in the soil layer near the depth of d50 at which 50% of the root length was accumulated. Residual film decreased the soil depth where 50% and 95% root length were accumulated and increased the proportion of root length in 0–30 cm soil layer. This adverse effect increased with residual film amount increasing. The dry matter of stems, leaves and ears decreased with residual film increasing. M90 reduced the above-ground dry matter insignificantly and the other treatments with residual film had significant effects. At the maturity stage, the above-ground dry matter in M90, M180, M360 and M720 was reduced by 2.4%, 14.2%, 22.2% and 29.4%, compared with M0. Residual film decreased evapotranspiration (ET), grain yield and water use efficiency (WUE) significantly except M90. ET, yield and WUE were reduced by 1.7%, 3.0% and 1.1% in M90, and 2.5%, 17.1% and 16.1% in M180, and 6.2%, 27.1% and 23.4% in M360, and 8.5%, 34.7% and 30.8% in M720, respectively. In summary, the residual film beyond 180 kg ha?1 had a significant negative effect on summer maize. This information will be useful to better understand and respond to residual film pollution and ensure safe agricultural production.

    Water use efficiency of castor bean under semi-arid conditions of Brazil

    de Araujo Nascimento D.dos Santos Brito A.da Silva L.M.N.Peixouto L.S....
    9页
    查看更多>>摘要:? 2021 Elsevier B.V.Castor bean is one of the main and promising agricultural crops for the production of biodiesel, castor oil and castor bean cake, which have high added value, especially the castor oil. The objective of the present study was to evaluate the water use efficiency (WUE) of castor bean cultivars by assessing the soil water balance components (storage and water storage variation; internal drainage; capillary rise; irrigation depth; rainfall and actual evapotranspiration), according to the phenological stages. The experimental design was in randomized blocks, in 8 × 6 factorial scheme (eight cultivars: BRS Paragua?u; EBDA MPA11; EBDA MPB01; IAC 2028; IAC 226; BRS Nordestina; IAC Guarani, AG IMA 110–204 and BRS Energia and six periods of evaluation), with three repetitions and 15 plants in each experimental plot. Daily monitoring of soil water content was performed with a capacitance probe (Frequency Domain Reflectometry - FDR, PR2/6 model), at depths of 0.1, 0.2, 0.3, 0.4 and 0.6 m, with 0.6 m being the lower limit of the soil control volume for castor bean. The total soil water potential gradient was determined with tensiometers installed at depths of 0.5 and 0.7 m, and the flux densities were estimated using the Darcy-Buckingham equation. Supplemental irrigation was efficient in maintaining water availability during the crop cycle. Soil water storage was lower for the most productive castor bean cultivar (EBDA MPA 11), with an inverse relationship between yield and water storage, due to its water requirement. The highest and lowest values of internal drainage and capillary rise were found for BRS Nordestina and IAC 226, respectively. EBDA MPA 11 had the best water use efficiency among the castor bean cultivars, differing only from IAC Guarani and EBDA MPB 01.

    Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China

    Wang H.Xiang Y.Zhang F.Tang Z....
    13页
    查看更多>>摘要:? 2021 Elsevier B.V.Given water resources scarcity in Northwest China and the urgent need for the integration and optimization of scientific and technological resources in facility agriculture, this experiment explored the appropriate water and fertilizer management measures for greenhouse sweet pepper under fertilization in Northwest China. A two-year drip fertigation sweet pepper experiment was conducted in a solar greenhouse, with four irrigation levels (W1: 105% ETC, W2: 90% ETC, W3: 75% ETC, W4: 60% ETC) and four nitrogen levels (N1: 300 kg/ha, N2: 225 kg/ha, N3: 150 kg/ha, N4: 75 kg/ha). The results showed that above-ground dry matter accumulation (DMA), yield, harvest index (HI), and water use efficiency (WUE) of sweet pepper increased first and then decreased with the increase of irrigation/nitrogen amounts under the same nitrogen/irrigation levels. The partial factor productivity of nitrogen (PFPN) decreased significantly with the increase of nitrogen application rate, while it increased first and then decreased with the increase of irrigation level. The PFPN reached a peak at W2 level, despite no significant difference between W2 and W3 levels. With the increase of nitrogen application rate, soluble sugar and vitamin C content increased first and then decreased with a maximum at N3 level; nitrate content increased with the increase of nitrogen application rate, and there was no significant difference between N4 and N3 levels. The contents of soluble sugar and nitrate nitrogen decreased with the increase of irrigation amount, and they did not differ between W1 and W3 levels at N3 level; the vitamin C content increased first and then decreased with the increase of irrigation amount, reaching the maximum in W2 or W3 treatments. Considering the shortage of water resources in the study area, the W3N3 treatment (75% ETC, 150 kg/ha) could be recommended as the optimal drip fertigation strategy. Results showed that the optimal value of sweet pepper (the best confidence intervals of 85%) was achieved at the irrigation water and nitrogen amount of 78.2–80.8% ETC and 164.5–189.5 kg/ha, respectively. This study provides scientific basis for water and nitrogen management of high yield, quality, and benefit planting of facility sweet pepper in Northwest China.

    Estimating potential yield and change in water budget for wheat and maize across Huang-Huai-Hai Plain in the future

    Shirazi S.Z.Mei X.Liu B.Liu Y....
    17页
    查看更多>>摘要:? 2021 Elsevier B.V.Climate change impacts crop productivity as atmospheric conditions and water supply change, particularly in intensive cropping areas. This study used the validated AquaCrop Model, which was run with downscaled daily climate data produced by SDSM and CanESM2. The changes in the potential grain yield of winter wheat and summer maize and water budget during the cropping seasons were estimated for the Huang-Huai-Hai Plain (3H Plain) under RCP4.5 and RCP8.5 scenarios. The results show that the potential yield of winter wheat is increasing with similar spatial patterns in the 2030s, 2050s, and 2080s, with much of the increase is distributed in Shandong and northeastern parts of Henan. During the winter wheat growth period, the water budget deficit will likely improve from ?210 mm in the 2030s to ?202 mm in 2080s under RCP4.5 and from ?206 mm in the 2030s to ?191 mm in 2080s under RCP8.5 across the 3H Plain. The water budget during the winter wheat period will continue to be in deficit in the north 3H Plain and improvements are estimated mostly in the lower southern areas of the Plain. The summer maize potential yield is estimated to increase from the baseline period, but yields will decrease by 0.81%, 1.19%, and 2.10% in the 2030s, 2050s, and 2080s, respectively, under RCP8.5 compared to RCP4.5. During the summer maize growth period, the water budget is also estimated to improve from 109 mm in 2030s to 126 mm in 2080s under RCP4.5 and 107 mm in the 2030s to 163 mm in 2080s under RCP8.5. This increase is mainly estimated in the central and south of the 3H Plain. The estimated ETc of winter wheat shows no significant decrease, while the reduction of 6 mm and 13 mm for summer maize is observed under RCP4.5 and RCP8.5, respectively. The study provides scientific evidence to devise adaptation and mitigation climate change strategies for agricultural productivity and water resource management.

    A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration

    Awada H.Di Prima S.Sirca C.Giadrossich F....
    12页
    查看更多>>摘要:? 2021 Elsevier B.V.Satellite remote sensing-based surface energy balance (SEB) techniques have emerged as useful tools for quantifying spatialized actual evapotranspiration at various temporal and spatial scales. However, discontinuous data acquisitions and/or gaps in image acquisition due to cloud cover can limit the applicability of satellite remote sensing (RS) in agriculture water management where continuous time series of daily crop actual evapotranspiration (ETc act) are more valued. The aim of the research is to construct continuous time series of daily ETc act starting from temporal estimates of actual evapotranspiration obtained by SEB modelling (ETa eb) on Landsat-TM images. SEBAL model was integrated with the FAO 56 evaporation model, RS-retrieved vegetative biomass dynamics (by NDVI) and on-field measurements of soil moisture and potential evapotranspiration. The procedure was validated by an eddy covariance tower on a vineyard with partial soil coverage in the south of Sardinia Island, Italy. The integrated modeling approach showed a good reproduction of the time series dynamics of observed ETc act (R2 =0.71, MAE=0.54 mm d-1, RMSE=0.73 mm d-1). A daily and a cumulative monthly temporal analysis showed the importance of integrating parameters that capture changes in the soil-plant-atmosphere (SPA) continuum between Landsat acquisitions. The comparison with daily ETc act obtained by the referenced ET fraction (ETrF) method that considers only weather variability (by ETo) confirmed the lead of the proposed procedure in the spring/early summer periods when vegetation biomass changes and soil water evaporation have a significant weight in the ET process. The applied modelling approach was also robust in constructing the missing ETc act data under scenarios of limited cloud-free Landsat acquisitions. The presented integrated approach has a great potential for the near real time monitoring and scheduling of irrigation practices. Further testing of this approach with diverse dataset and the integration with the soil water modeling is to be analyzed in future work.