首页期刊导航|Aquatic Toxicology
期刊信息/Journal information
Aquatic Toxicology
Elsevier Science
Aquatic Toxicology

Elsevier Science

0166-445X

Aquatic Toxicology/Journal Aquatic ToxicologySCIISTP
正式出版
收录年代

    Transepithelial potential remains indicative of major ion toxicity in rainbow trout (Oncorhynchus mykiss) after 4-day pre-exposure to major salts

    Po B.H.K.Wood C.M.
    10页
    查看更多>>摘要:? 2022The Multi-Ion Toxicity (MIT) Model uses electrochemical theory to predict the transepithelial potential (TEP) across the gills as an index of major ion toxicity in freshwater animals. The goal is to determine environmental criteria that will be protective of aquatic organisms exposed to salt pollution. In recent studies, TEP disturbances above baseline (ΔTEP) during short-term exposures to major ions have been proven as indicative of their toxicity to fish, in accord with the MIT model. However, the acute 1-h exposures used in these previous studies might not be realistic relative to the 24 h or 96 h test periods used for toxicity assessment. To address this temporal inconsistency, the current study investigated both the TEP responses to serial concentrations of 10 major salts (NaCl, Na2SO4, NaHCO3, KCl, K2SO4, KHCO3, CaCl2, CaSO4, MgCl2, MgSO4) and plasma ion levels in juvenile rainbow trout after they had been pre-exposed to 50% of the 96h-LC50 levels of these same salts for 4 days. The pre-exposures caused no mortalities. In general, plasma ions (Na+, K+, Ca2+, Mg2+, Cl?) were well-regulated; however, pre-exposure to sulfate salts resulted in the greatest number of alterations in plasma ion levels. TEP responses remained largely similar to those of na?ve trout (without salt pre-exposure). All salts caused hyperbolic concentration-dependent increases in TEP that were well-described by the Michaelis-Menten equation. In the pre-exposed trout, the variation of ?TEP at the 96h-LC50 concentrations was only 2.2-fold, compared to nearly 28-fold variation among the molar concentrations of the various salts at the 96h-LC50s, identical to the conclusion for na?ve trout. Overall, the results remove the temporal inconsistency of previous tests and remain supportive of the MIT model. In addition, the recorded alterations in certain plasma ions, baseline TEP, and Michaelis-Menten constants improve our knowledge on specific physiological responses after extended major ion exposure.

    Transcriptomic and proteomic analysis of Chinese rare minnow (Gobiocypris rarus) larvae in response to acute waterborne cadmium or mercury stress

    Chen C.-Z.Li P.Liu L.Li Z.-H....
    9页
    查看更多>>摘要:? 2022 Elsevier B.V.In this study, Chinese rare minnow (Gobiocypris rarus) larvae were exposed to the control group, Cd concentrations (0.5 and 2.5 mg/L), and Hg concentrations (0.1 and 0.3 mg/L) for 96 h. Transcriptome analysis showed that 816 and 1599 significantly differentially expressed genes (DEGs) were identified in response to 2.5 mg/L Cd2+ and 0.3 mg/L Hg2+, respectively. Functional enrichment analysis revealed that DEGs were mostly associated with immune responses after Cd exposure, such as antigen processing and presentation, phagosome, apoptosis, and lysosome. Similarly, functional enrichment analysis showed that many pathways were mostly involved in metabolism after Hg exposure, such as glutathione metabolism and starch and sucrose metabolism. Results of two-dimensional electrophoresis (2-DE) showed that the abundance of 10 protein spots was significantly altered in the Cd2+ treatments. The proteomic analysis demonstrated that Cd toxicity might impair cytoskeletal and cell motility-related protein activity in the liver of G. rarus. Similarly, the abundance of 24 protein spots was significantly altered in the Hg2+ treatments. Hg toxicity regulates the expression of proteins belonging to several functional categories, including cytoskeleton, oxidative stress, digestive system, and energy metabolism. This study provides valuable relevant insight into the molecular mechanisms in response to Cd or Hg toxicity in aquatic organisms and will help screen for potential biomarkers to respond to Cd and Hg pollutants.

    Effects of trace elements contaminations on the larval development of Paracentrotus lividus using an innovative experimental approach

    El Idrissi O.Aiello A.Pasqualini V.Ternengo S....
    11页
    查看更多>>摘要:? 2022Several experiments were performed using larvae of Paracentrotus lividus (Lamarck, 1816) in order to determine the consequences of different chronic contamination with mixtures of (i) fifteen trace elements from concentrations measured in the world ocean seawater, and (ii) seven trace elements from contamination resulting from mining. To predict the impact of increased marine pollution, higher concentrations were also used. These bioassays were conducted using spawners collected from Calvi (reference site, Corsica), and Albo (mining area, Corsica). The effects of trace elements have been studied on the entire larval development. The results show wider arms and delayed development as the number and concentration of trace elements increases. Therefore, the synergy between the different trace elements is of paramount importance with regard to the impact on organisms. Probably due to a hormesis phenomenon, larvae contaminated with seven trace elements at average concentrations developed more quickly. This work also highlighted the importance of the origin of spawners in ecotoxicological studies. To our knowledge, this is the first study to investigate the effects of such a broad combination of trace elements for chronic contamination on the entire larval stage of Paracentrotus lividus.

    Exposure to clothianidin and predators increases mortality for heptageniidae

    Rackliffe D.R.Hoverman J.T.
    6页
    查看更多>>摘要:? 2022 Elsevier B.V.Neonicotinoids are a class of insecticide with global impacts on natural environments. Due to their high solubility, they are frequently found in stream ecosystems where they have the potential to impact non-target biota. While environmental concentrations are generally below lethal levels for most organisms, there are concerns that sublethal exposures can impact aquatic insects, particularly mayflies, which are highly sensitive to neonicotinoids. Because sublethal doses of neonicotinoids can reduce mobility in mayflies, exposure could indirectly increase mortality due to predation by impairing their ability to avoid initial detection or escape predators. We examined whether exposure to the neonicotinoid clothianidin at a concentration below the 96-h EC50 (7.5 μg/L), would increase the predation risk of Stenacron and Stenonema mayfly nymphs by larval southern two-lined salamanders (Eurycea cirrigera) or eastern dobsonfly nymphs (Corydalus cornutus) using a controlled laboratory experiment. For Stenacron, we found significant interactive effects between pesticide and dobsonfly exposure that increased the hazard ratio (HR). The HR assesses risk relative to a control population, in this case mayflies in similar experimental conditions but without exposure to neonicotinoids or predators. With the addition of clothianidin, the HR of mayflies exposed to a dobsonfly nymph significantly increased from 1.8 to 6.2 while the HR for those exposed to salamanders increased from 7.6 to 12.5. For Stenonema, the HR initially decreased due to dobsonfly exposure (1 to 0.3) but increased when clothianidin and dobsonflies were combined (0.3 to 1.6). Our study shows that aquatic exposure to clothianidin can increase mortality for aquatic insects through predator pressure. Such indirect effects associated with neonicotinoid exposure warrant further investigation to expand our understanding of pesticide impacts to aquatic systems.

    Teratogenicity of retinoids detected in surface waters in zebrafish embryos and its predictability by in vitro assays

    Pipal M.Novak J.Rafajova A.Smutna M....
    11页
    查看更多>>摘要:? 2022 Elsevier B.V.Retinoids are newly detected compounds in aquatic ecosystems associated with cyanobacterial water blooms. Their potential health risks are only scarcely described despite numerous detections of all-trans retinoic acid (ATRA) and its derivatives in the environment. Besides the known teratogen ATRA there is only little or no information about their potency and namely their effects in vivo. We characterize ATRA and 8 other retinoids reported to occur in the environment for their bioactivity and teratogenicity using four in vitro reporter gene assays and zebrafish (Danio rerio) embryotoxicity assay. Our results document the ability of these compounds to interfere with retinoid signalling and cause teratogenicity at environmentally relevant levels with EC50 values at nM (hundreds of ng/L) levels and teratogenic indexes ranging from 2.8 (9cis retinoic acid) to 15.8 (retinal). The relative potency of individual compounds for teratogenicity ranged from 0.059 (retinal) to 0.96 (5,6-epoxy ATRA) when compared to ATRA. An environmentally relevant mixture of retinoids was tested showing good predictability of teratogenicity from the in vitro activities and additive toxicity of the mixture. The high teratogenicity of the newly described compounds associated with cyanobacteria presents a concern for developmental stages due to high conservation of the retinoid signalling across vertebrates.

    Iron reproductive toxicity of marine rotifer sibling species: Adaptation to temperate and tropical habitats

    Han C.Kim H.-J.Sakakura Y.Hagiwara A....
    12页
    查看更多>>摘要:? 2022 Elsevier B.V.Iron (Fe), a trace metal in coastal waters has increased significantly due to anthropogenic activities, however, few studies have examined its toxicity to marine organism reproduction and associated mechanisms. We employed two marine rotifers, the temperate Brachionus plicatilis, and tropical B. rotundiformis to investigate the toxicity of iron (FeSO4?7H2O) and its deleterious effects on reproductive features in females (sexual fecundity, abnormal resting eggs, and swimming speed) and males (lifespan, swimming speed, and spermatozoa quality) under lethal and sub-lethal exposure. The 24 h median lethal concentration (LC50) of iron was determined as 0.9 and 1.7 μg/mL per ng of dry weight for B. plicatilis and B. rotundiformis, respectively. During sub-lethal iron (20–75 μg/mL) exposure, higher iron (≥ 20 μg/mL for B. plicatilis and ≥ 45 μg/mL for B. rotundiformis) induced rotifer sexual toxicity especially in normal resting egg development and production. These were supported by the data of male shorter lifespan, poor sperm vitality, and rotifer behavioral changes as the iron concentration increased. Iron effects on swimming behavior, slower males and faster females, should reduce male/female encounter rates associated with inactive fertilized egg (resting egg) production. Two rotifer species exhibited different iron-response patterns in genetic and enzymatic activities including iron homeostasis-maintaining related Fe-S protein, and oxidative/antioxidant related lipid peroxidation product (MDA), superoxidase dismutase/SOD, catalase/CAT, and cytochrome P450 under acute iron exposure. Antioxidant activities were vulnerable in B. plicatilis but kept activities in B. rotundiformis, which may attribute to their temperate and tropical habitat adaptations.

    Thiacloprid-induced hepatotoxicity in zebrafish: Activation of the extrinsic and intrinsic apoptosis pathways regulated by p53 signaling pathway

    Xie Z.Lu G.Zhou R.Ma Y....
    12页
    查看更多>>摘要:? 2022Thiacloprid (THCP) is one of the major neonicotinoid insecticides, and its wide use has led to high detection in various media of aquatic environment, posing potential risks to aquatic organisms. This study was focused on the phenotypic responses and mechanisms of toxicity in zebrafish (Danio rerio) upon treatment with waterborne THCP (0.4, 4 and 40 μM) for 21 days in vivo or 412.9 μM for 24 h in vitro. In vivo, we found that THCP induced severe oxidative stress, hepatic abnormalities, leakage of alanine aminotransferase and aspartate aminotransferase and apoptosis. The analysis of RNA-sequencing suggested the activation of the p53 signaling pathway under THCP exposure. The following in vitro study showed that THCP intoxication activated reactive oxygen species (ROS)-dependent p53 signaling pathway and induced hepatotoxicity in the zebrafish liver cells. The addition of p53 inhibitor pifithrin-α (10 μM) exerted protection against of THCP-induced hepatotoxicity by reducing oxidative stress and inhibiting the p53 signaling pathway and apoptosis. Moreover, gene expression analyses indicated that both the extrinsic and intrinsic apoptosis pathways were involved in apoptosis induced by p53 activation. Overall, our results suggest that activation of the p53 signaling pathway is an important mechanism of THCP-induced hepatotoxicity.

    Effects of ammonia on gill (Na+, K+)-ATPase kinetics in a hololimnetic population of the Amazon River shrimp Macrobrachium amazonicum

    Garcon D.P.Freitas R.S.Costa M.I.C.Leone F.A....
    14页
    查看更多>>摘要:? 2022Water quality is essential for successful aquaculture. For freshwater shrimp farming, ammonia concentrations can increase considerably, even when culture water is renewed frequently, consequently increasing the risk of ammonia intoxication. We investigated ammonia lethality (LC50-96 h) in a hololimnetic population of the Amazon River shrimp Macrobrachium amazonicum from the Paraná/Paraguay River basin, including the effects of exposure to 4.93 mg L?1 total ammonia concentration on gill (Na+, K+)-ATPase activity. The mean LC50-96 h was 49.27 mg L?1 total ammonia, corresponding to 1.8 mg L?1 un-ionized ammonia. Except for NH4+ affinity that increased 2.5-fold, that of the gill (Na+, K+)-ATPase for ATP, Mg2+, Na+, K+ and ouabain was unchanged after ammonia exposure. Western blotting of gill microsomal preparations from fresh caught shrimps showed a single immunoreactive band of ≈110 kDa, corresponding to the gill (Na+, K+)-ATPase α-subunit. Ammonia exposure increased (Na+, K+)-ATPase activity by ≈25%, coincident with an additional 130 kDa α-subunit immunoreactive band, and increased K+-stimulated and V(H+)-ATPase activities by ≈2.5-fold. Macrobrachium amazonicum from the Paraná/Paraguay River basin is as tolerant to ammonia as are other Amazon River basins populations, showing toxicity comparable to that of marine crustaceans.

    Tea polyphenols alleviates acetochlor-induced apoptosis and necroptosis via ROS/MAPK/NF-κB signaling in Ctenopharyngodon idellus kidney cells

    Zhao X.Li X.Shi X.Liu Q....
    13页
    查看更多>>摘要:? 2022 Elsevier B.V.Overuse of acetochlor pollutes soil and rivers, causing threats to the ecosystem. Studies found that acetochlor exposure could damage multiple organs and tissues in fish and mammal. Tea polyphenols (TP), a natural antioxidant that extracted from tea, has been widely used in food and feed additions. However, the mechanism by which acetochlor causes tissue damage is unclear, and its mitigating agent has yet to be developed. Therefore, we established acetochlor exposure and TP mitigation models by treating Ctenopharyngodon idellus kidney (CIK) cells with 20 μM acetochlor and/or 2.5 μg/mL TP for 24 h, and detected the programmed cell death and its related pathways. The results showed that acetochlor exposure modified antioxidant enzyme activities, induced oxidative stress, resulted in the decline of MMP and ATP levels, enhanced glycolysis and lactate accumulation, and triggered apoptosis and necroptosis in CIK cells. However, TP could inhibit CYP450s expression, activate Nrf2 pathway, enhance antioxidant capacity, further effectively alleviate acetochlor-induced CIK cell death. Overall, the present study proved that acetochlor exposure triggered mitochondrial damage and lactate accumulation-mediated apoptosis and necroptosis through CYP450s/ROS/MAPK/NF-κB pathway. Furthermore, TP could alleviate effectively cell death through relieving oxidative stress and lightening Warburg-like effect.

    Copper exposure improves the upper thermal tolerance in a sex-specific manner, irrespective of fish thermal history

    Mottola G.Nikinmaa M.Anttila K.
    8页
    查看更多>>摘要:? 2022Ectotherms can respond to climate change via evolutionary adaptation, usually resulting in an increase of their upper thermal tolerance. But whether such adaptation influences the phenotypic plasticity of thermal tolerance when encountering further environmental stressors is not clear yet. This is crucial to understand because organisms experience multiple stressors, besides warming climate, in their natural environment and pollution is one of those. Here, we studied the phenotypic plasticity of thermal tolerance in three-spined stickleback populations inhabiting spatially replicated thermally polluted and pristine areas before and after exposing them to a sublethal concentration of copper for one week. We found that the upper thermal tolerance and its phenotypic plasticity after copper exposure did not depend on the thermal history of fish, suggesting that five decades of thermal pollution did not result in evolutionary adaptation to thermal tolerance. The upper thermal tolerance of fish was, on the other hand, increased by ~ 1.5 °C after 1-week copper exposure in a sex-specific manner, with males having higher plasticity. To our knowledge this is the first study that shows an improvement of the upper thermal tolerance as a result of metal exposure. The results suggest that three-spined sticklebacks are having high plasticity and they are capable of surviving in a multiple-stressor scenario in the wild and that male sticklebacks seem more resilient to fluctuating environmental conditions than female.