查看更多>>摘要:Procerain (Pc) and Procerain B (PcB) are two latex proteases from Calotropis procera having potential applications in food and other industries. However, autolytic degradation of these proteases limits their potential use in industry. Nevertheless, basic mechanism underlying the autoproteolysis has not been detailed. In order to understand the same, we subjected the enzymes to various denaturing and activating conditions. The results showed that structural changes induced by different denaturing conditions trigger their autoproteolysis. We also observed differential response of Pc, PcB and other papain-like proteases towards autocatalysis in presence of reducing agent in-spite of sharing the same structural fold, including the number of disulfide bonds. The possible reason underlying this intriguing observation is also discussed. Further, present work establishes that structural changes in the proteases lead to autoproteolysis and the enzymes are stable unless they experience structural perturbation. These findings could thus be useful for their practical applications in industries.
查看更多>>摘要:Differences in phenolic composition across different ontogenic stages can be crucial in determining the interaction outcomes between plants and their surrounding biotic environment. In seagrasses, specific phenolic compounds have rarely been analyzed and remain unexplored in ontogenic stages other than non-reproductive adults. Furthermore, it is generally accepted that plants would prioritize defense (e.g., through increased phenolic content) on tissues or stages that are critical for plant fitness but how this affects nutritional quality or plant resources has been scarcely explored. We analyzed how phenolic composition, N and C content and carbohydrate resources varied among different life stages (i.e. old and young leaves of reproductive and nonreproductive plants, and leaves of seedlings) in the seagrass Posidonia oceanica. We identified five phenolic compounds, whose structures were established as hydroxycinnamate esters of tartaric acid. Also, our results show that in all examined ontogenic stages phenolic compounds have the same qualitative composition but inflorescences exhibit higher contents than vegetative tissues. We did not find a reduction in stored resources in reproductive plants, pointing to some kind of compensatory mechanism in the production or storage of resources. In contrast, seedlings seemed to have less phenolic compounds than reproductive plants, perhaps due to limited resources available to allocate to phenolic production. Our results demonstrate how different ontogenic stages change their investment in specialized phenolic compounds prioritizing different functions according to the needs and limitations of that stage.
查看更多>>摘要:Seasonal variations of phenolic compounds, in leaves of Zostera marina L. from the Baltic Sea near Kiel/Germany were investigated. Dominant compounds were mono- and disulfated flavonoids and phenylpropanoic acids, in particular luteolin 7,3'-O-disulfate and diosmetin 7-O-sulfate as well as rosmarinic acid, a dimeric phenylpropanoid. All detected sulfated flavones showed similar seasonal trends: there were two significant concentration peaks in June and November. Moreover, two geographically distinct flavonoid chemotypes were identified based on their respective main flavonoid; one chemotype was characterized by the prevalence of luteolin 7,3'-O-disulfate (German Baltic Sea), and the other by the prevalence of diosmetin 7-O-sulfate (Norwegian North Sea). Furthermore, an undescribed tetrameric phenylpropanoid, 7 '',8 ''-didehydrosalvianolic acid B, was isolated and its structure was established by extensive NMR, MS, and CD experiments. This compound inhibited activity of Na+/K+-ATPase in the micro-molar range without any cytotoxic effects against human cancer and normal cells.
查看更多>>摘要:Auxin regulates root development and is considered a potential target for improving crop yield. In this study, we identified 22 basic leucine zipper transcription factors (bZIP TFs) that responded to two concentrations (1 and 50 mu M) of indole-acetic acid (IAA) during wheat root development by transcriptome analysis. In addition, we identified 176 TabZIP genes from the wheat genome. Phylogenetic classification and gene structure analysis indicated that the 22 auxin-responsive TabZIPs were divided into groups 1 to 9 (except group 3) with different functions. Phenotypic analysis showed that knocking out Arabidopsis AtHY5, which is the homologous gene of TabZIP6D_147 (one of the downregulated auxin-responsive TabZIPs under both 1 and 50 mu M IAA that belonged to group 4), resulted in insensitivity to IAA, while the phenotype of TabZIP6D_147/hy5 complementary lines recovered to that of the wild type, suggesting that downregulated TabZIP6D_147 plays a negative role in the auxin signalling pathway. These results revealed that auxin-responsive TabZIP genes may play different roles in root architecture in the response to the two concentrations of auxin.
Pina, Licia T. S.Serafini, Mairim R.Oliveira, Marlange A.Sampaio, Laeza A....
26页
查看更多>>摘要:Natural products from plants have gained prominence in the search for therapeutic alternatives. Monoterpenes, such as carvone, are suggested as candidates for the treatment of several diseases. Therefore, the objective of this study is to review the pharmacological activities of carvone in experimental models in vitro and in vivo. For this, the searches were carried out in May 2020 (upgraded in July 2021) in the databases of PubMed, Web of Science and Scopus and gathered studies on the pharmacological activities of carvone. Two independent reviewers performed the selection of articles using the Rayyan application, extracted the relevant data and assessed the methodological quality of the selected studies using Syrcle's risk of bias tool. Ninety-one articles were selected that described 10 pharmacological activities of carvone, such as antimicrobial, antispasmodic, anti-inflammatory, antioxidant, antinociceptive, anticonvulsant, among others. The evaluation of the methodological quality presented an uncertain risk of bias for most studies. In light of that, carvone stands out as a viable and promising alternative in the treatment of several pathological conditions. However, carrying out studies to evaluate possible mechanisms of action and the safety of this monoterpene is recommended.
查看更多>>摘要:Six undescribed compounds, including four undescribed ecdysteroids (cyathsterones A-D) and two undescribed phenolic glycosides (cyathglucosides A-B), were isolated from the roots of Cyathula officinalis Kuan. Their structures were based on chemical analyses, NMR spectroscopic evidence, DP4+ calculations, and hydrolysis products. All compounds inhibited NO release in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in vitro. Among them, cyathsterone A showed the strongest inhibitory effects. Moreover, cyathsterone A has been shown to inhibit the release of the proinflammatory cytokines TNF-alpha, IL-6, and IL-1 beta in LPS-induced RAW 264.7 macrophages in vitro. Further studies found that cyathsterone A present concentration-dependent suppression of the protein expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells in vitro and exerted anti-inflammatory activity via the NF-kappa B signalling pathway.