首页期刊导航|Journal of Plant Physiology
期刊信息/Journal information
Journal of Plant Physiology
Gustav Fischer
Journal of Plant Physiology

Gustav Fischer

0176-1617

Journal of Plant Physiology/Journal Journal of Plant PhysiologySCIISTP
正式出版
收录年代

    Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi

    Xie K.Ren Y.Chen A.Yang C....
    12页
    查看更多>>摘要:? 2021Nitrogen (N) is the most abundant mineral nutrient required by plants, and crop productivity depends heavily on N fertilization in many soils. Production and application of N fertilizers consume huge amounts of energy and substantially increase the costs of agricultural production. Excess N compounds released from agricultural systems are also detrimental to the environment. Thus, increasing plant N uptake efficiency is essential for the development of sustainable agriculture. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most terrestrial plants that facilitate plant nutrient uptake and increase host resistance to diverse environmental stresses. AM association is an endosymbiotic process that relies on the differentiation of both host plant roots and AM fungi to create novel contact interfaces within the cells of plant roots. AM plants have two pathways for nutrient uptake: either direct uptake via the root hairs and root epidermis, or indirectly through AM fungal hyphae into root cortical cells. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungi–root interface have been identified. Here, we mainly summarize the recent advances in N uptake, assimilation, and translocation in AM symbiosis, and also discuss how N interplays with C and P in modulating AM development, as well as the synergies between AM fungi and soil microbial communities in N uptake.

    Auxin transport in developing protophloem: A case study in canalization

    Aliaga Fandino A.C.Hardtke C.S.
    7页
    查看更多>>摘要:? 2021 The Author(s)Spatiotemporal cues orchestrate the development of organs and cellular differentiation in multicellular organisms. For instance, in the root apical meristem an auxin gradient patterns the transition from stem cell maintenance to transit amplification and eventual differentiation. Among the proximal tissues generated by this growth apex, the early, so-called protophloem, is the first tissue to differentiate. This observation has been linked to increased auxin activity in the developing protophloem sieve element cell files as compared to the neighboring tissues. Here we review recent progress in the characterization of the unique mechanism by which auxin canalizes its activity in the developing protophloem and fine-tunes its own transport to guide proper timing of protophloem sieve element differentiation.

    Sieve element occlusion: Interactions with phloem sap-feeding insects. A review

    Walker G.P.
    12页
    查看更多>>摘要:? 2021 Elsevier GmbHPhloem sieve element (SE) occlusion has been hypothesized for decades to be a mechanism of resistance against phloem sap-feeding insects. Few studies have tested this hypothesis although it is likely a widespread phenomenon. This review focuses on SE occlusion by callose and P-proteins. Both are reversible, which would allow the plant to defend itself against phloem sap-feeders when SEs are penetrated and resume normal function when the insects give up and withdraw their stylets. Callose (β-1,3 glucans with some β-1,6 branches) serves many roles in plant physiology in many different tissues, each being under the control of different callose synthase genes; only callose deposited in SE sieve pores is relevant to SE occlusion. The amount of callose in sieve pores (and consequently how much it impedes sap flow) is determined by the balance in activity between callose synthase and β-1,3 glucanase. Sieve pore callose deposition has been shown to provide resistance to some phloem sap-feeders in a few studies, and in one, the difference in resistance between a susceptible and resistant rice variety was due to the ability or inability of the insect to upregulate the plants' β-1,3 glucanase that degrades the callose deposition. P-proteins occur only in dicotyledons and include a variety of proteins, not all of which are involved in SE occlusion. In some plants, P-proteins form distinct bodies in mature functional SEs. In papilionid legumes, these discrete bodies, called forisomes can expand and contract. In their expanded state, they effectively plug SEs and stop the flow of sap while in their contracted state, they provide negligible resistance to sap flow. Expansion of forisomes is triggered by an influx of Ca2+ into the SE. Penetration of a legume (Vicia faba) SE by a generalist aphid not adapted to legumes triggers forisome expansion which occludes the SE and prevents the aphid from ingesting sap. In contrast, a legume specialist aphid, Acyrthosiphon pisum, does not trigger forisome expansion and readily ingests sap from V. faba. P-protein bodies in SEs of non-legumes do not appear to be involved in SE occlusion. In most dicotyledons, P-proteins do not form discrete bodies, but rather occur as filamentous aggregations adhering to the parietal margins of the SE and in response to damage, are released into the lumen where they are carried by the flow of sap to the downstream sieve plate where they back up and clog the sieve pores. Their effectiveness at actually stopping the flow of sap is controversial. In one study, they seemed to provide little resistance to the flow of sap while in other studies, they provided considerable resistance. In response to injury in melon, they completely stop the flow of sap, and in an aphid-resistant melon, penetration of SEs by the melon aphid, Aphis gossypii, triggers P-protein occlusion which prevents the aphids from ingesting sap. The first P-protein described, PP1, occurs only in the genus Cucurbita, and although it has been often cited to function as a SE occlusion protein, experimental evidence suggests it does not play a significant role in SE occlusion. The most common strategy for phloem sap-feeders to mitigate P-protein occlusion seems to be avoid triggering it. A widely cited in vitro study suggested that aphid saliva can reverse P-protein occlusion, but a subsequent study demonstrated that saliva was ineffective at reversing P-protein occlusion in vivo. Lastly, SE callose deposition in wheat triggered by Russian wheat aphid has been hypothesized to create an artificial sink that benefits the aphid, but additional studies are needed to test that hypothesis.

    Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L.)

    Malek M.Ghaderi-Far F.Torabi B.Sadeghipour H.R....
    11页
    查看更多>>摘要:? 2021 Elsevier GmbHHigh temperature stress (HTS) imposes secondary dormancy (SD) also known as thermo-dormancy in many seeds. Priming by soil moisture however, may improve germination though under HTS it may compromise seed longevity. Knowledge of how HTS and priming affect dormancy status/viability loss of a particular crop seed species is essential in agriculture. Accordingly, control non-primed and hydro-primed seeds from Dk-xpower and Traper rapeseed cultivars with low and high potential for SD induction, respectively, were compared for germination behavior, response to GA and some phytohormone effectors under HTS. HTS reduced germination in non-primed Dk-xpower and Traper seeds mainly through the induction of thermo-inhibition/death and thermo-dormancy, respectively. Under HTS, GA3 application reduced thermo-dormancy in favor of thermo-inhibition only in Traper but the GA inhibitor paclobutrazol intensified thermo-dormancy in both cultivars. The ABA inhibitor, fluridone also reduced thermo-dormancy in favor of thermo-inhibition only in Traper. Thus, under HTS, GA biosynthesis is determinant in seed thermo-dormancy/thermo-inhibition dynamics. Hydropriming improved germination under HTS through reduced thermo-inhibition/death (Dk-xpower) and thermo-dormancy (Traper). Here, GA3 application increased death and compromised germination mainly in Dk-xpower. Paclubutrazol application however, increased thermo-dormancy by compromising thermo-inhibition/death in Traper. Overall, hydro-priming weakened seed phytohormonal germination responses. Controlled deterioration resulted in decreased longevity of hydro-primed seeds but induced SD in non-primed Traper seeds. Thus, down-regulation of GA biosynthesis may control differential induction of SD in rapeseed seeds under HTS while hydro-priming stimulates seed germination possibly through overcoming limitations in GA biosynthesis. The agricultural importance of these findings at the ecosystem scale is discussed.

    Dioscorea composita WRKY3 positively regulates salt-stress tolerance in transgenic Arabidopsis thaliana

    Yu S.Lan X.Zhou J.Gao K....
    10页
    查看更多>>摘要:? 2021Dioscorea composita (D. composita) is a perennial dioecious herb with strong biotic and abiotic stress tolerance. However, what roles WRKY transcription factors might play in regulating abiotic stress responses in this medicinal plant is unknown. Here, we isolated DcWRKY3 from D. composita and analyzed its role in stress tolerance. DcWRKY3 is a group I WRKY transcription factor that localized to the nucleus and specifically bound to the W-box cis-elements, but lacked transcriptional activation activity in yeast cells. The expression of DcWRKY3 was strongly affected by salt stress. The heterologous expression of DcWRKY3 strongly enhanced the seed germination rate and root length of Arabidopsis thaliana under salt stress. The DcWRKY3-expressing transgenic lines (DcWRKY3-OEs) also showed higher proline content and antioxidant enzyme activity but lower malondialdehyde and reactive oxygen (ROS) levels compared with the wild type. Moreover, these plants showed upregulated expression of genes related to the salt-stress response and ROS clearance. These findings indicate that DcWRKY3 plays a positive role in the salt-stress response by improving the ROS scavenging ability and maintaining the balance of osmotic pressure in plants. Further studies showed that DcWRKY3 binds to the promoter of AtP5CS1, but not AtSOD and AtRD22, suggesting that DcWRKY3 improves salt tolerance in plants by directly or indirectly regulating the expression of downstream genes. This functional characterization of DcWRKY3 provides new insight into the molecular mechanism underlying the response of D. composita to salt stress.

    Foliar sieve elements: Nexus of the leaf

    Adams III W.W.Stewart J.J.Polutchko S.K.Demmig-Adams B....
    9页
    查看更多>>摘要:? 2021 Elsevier GmbHIn this review, a central position of foliar sieve elements in linking leaf structure and function is explored. Results from studies involving plants grown under, and acclimated to, different growth regimes are used to identify significant, linear relationships between features of minor vein sieve elements and those of 1) leaf photosynthetic capacity that drives sugar synthesis, 2) overall leaf structure that serves as the platform for sugar production, 3) phloem components that facilitate the loading of sugars (companion & phloem parenchyma cells), and 4) the tracheary elements that import water to support photosynthesis (and stomatal opening) as well as mass flow of sugars out of the leaf. Despite comprising only a small fraction of physical space within the leaf, sieve elements represent a hub through which multiple functions of the leaf intersect. As the conduits for export of energy-rich carbohydrates, essential mineral nutrients, and information carriers, sieve elements play a central role in fueling and orchestrating development and function of the plant as well as, by extension, of natural and human communities that depend on plants as producers and partners in the global carbon cycle.

    Cold responses in rice: From physiology to molecular biology

    Yang S.
    2页
    查看更多>>摘要:? 2021As rice originated in tropical or subtropical areas, it is generally sensitive to cold stress. Understanding the physiological and molecular mechanisms underlying rice responses to cold stress can provide new power for engineering cold-tolerant and high-yielding rice varieties.

    Altering ureide transport in nodulated soybean results in whole-plant adjustments of metabolism, assimilate partitioning, and sink strength

    Lu M.-Z.Carter A.M.Tegeder M.
    12页
    查看更多>>摘要:? 2022 Elsevier GmbHLegumes develop a symbiotic relationship with bacteria that are housed in root nodules and fix atmospheric di-nitrogen (N2) to ammonia. In soybean (Glycine max (L.) Merr.) nodules, the final products of nitrogen (N) fixation are amino acids, and the ureides allantoin and allantoic acid that also serve as the major long-distance N transport forms. Recently, we have shown that increased expression of UPS1 (ureide permease 1) in soybean nodules results in enhanced ureide export from nodules with positive effects on N fixation and seed yield. Here, we demonstrate that changes in the ureide transport processes trigger alterations in allantoin and allantoic acid pools and partitioning throughout the transgenic plants. They further result in adjustments in amino acid availability in, and translocation to, root and shoot sinks. In addition, leaf carbon (C) capture, assimilation and allocation to sinks are improved, accommodating the increased nodule function, and root and shoot growth. Overall, we demonstrate that enhanced ureide partitioning in nodulated soybean leads to a complex rebalancing of N and C acquisition, metabolism, and transport processes with positive consequences for above- and below-ground vegetative biomass, and whole-plant N and C gains.

    Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host defense, and resistance

    Liu B.Stevens-Green R.Johal D.Buchanan R....
    9页
    查看更多>>摘要:? 2021Fungal infections of cereal crops pose a significant risk to global food security through reduced grain production and quality, as well as contamination of animal feed and human products for consumption. To combat fungal disease, we need to understand how the pathogen adapts and survives within the hostile environment of the host and how the host's defense response can be modulated for protection from disease. Such investigations offer insight into fungal pathogenesis, host immunity, the development of resistance, and mechanisms of action for currently-used control strategies. Mass spectrometry-based proteomics provides a technologically-advanced platform to define differences among fungal pathogens and their hosts at the protein level, supporting the discovery of proteins critical for disease, and uncovering novel host responses driving susceptibly or resistance of the host. In this Review, we explore the role of mass spectrometry-based proteomics in defining the intricate relationship between a pathogen and host during fungal disease of cereal crops with a focus on recent discoveries derived from the globally-devastating diseases of Fusarium head blight, Rice blast, and Powdery mildew. We highlight advances made for each of these diseases and discuss opportunities to extrapolate findings to further our fight against fungal pathogens on a global scale.

    Suppression of the tonoplast sugar transporter StTST3.2 improves quality of potato chips

    Kawochar M.A.Begum S.Wang E.Zhou T....
    9页
    查看更多>>摘要:? 2021 Elsevier GmbHWhich sugar transporter regulates sugar accumulation in tubers is largely unknown. Accumulation of reducing sugar (RS) in potato (Solanum tuberosum L.) tubers negatively affects the quality of tubers undergoing the frying process. However, little is known about the genes involved in regulating RS content in tubers at harvest. Here, we have identified two tonoplast sugar transporter (TST) 3-type isoforms (StTST3.1 and StTST3.2) in potato. Quantitative real-time PCR results indicate that StTST3.1 and StTST3.2 possess distinct expression patterns in various potato tissues. StTST3.2 was found to be the expressed TST3-type isoform in tubers. Further subcellular localization analysis revealed that StTST3.2 was targeted to the tonoplast. Silencing of StTST3.2 in potato by stable transformation resulted in significantly lower RS content in tubers at harvest or after room temperature storage, suggesting StTST3.2 plays an important role in RS accumulation in tubers. Accordingly, compared with the unsilenced control, potato chips processed from StTST3.2-silenced tubers exhibited lighter color and dramatically decreased acrylamide production at harvest or after room temperature storage. In addition, we demonstrated that silencing of StTST3.2 has no significant effect on potato growth and development. Thus, suppression of StTST3.2 could be another effective approach for improving processing quality and decreasing acrylamide content in potato tubers.