查看更多>>摘要:Background: Heterophylly is regard as adaptation to different environments in plant, and Populus euphratica is an important heterophyllous woody plant. However, information on its molecular mechanism in eco-adaptability remains obscure.Results: In this research, proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) technology in lanceolate, ovate, and dentate broad-ovate leaves from adult P. euphratica trees, respectively. Besides, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate and peroxidase activity in these heteromorphic leaves were investigated. A total number of 2,689 proteins were detected in the heteromorphic leaves, of which 56, 73, and 222 differential abundance proteins (DAPs) were determined in ovate/lanceolate, dentate broad-ovate/lanceolate, and dentate broad-ovate/ovate comparison groups. Bioinformatics analysis suggested these altered proteins related to photosynthesis, stress tolerance, respiration and primary metabolism accumulated in dentate broad-ovate and ovate leaves, which were consistent with the results of physiological parameters and Real-time Quantitative PCR experiments.Conclusion: This research demonstrated the mechanism of the differential abundance proteins in providing an optimal strategy of resource utilization and survival for P. euphratica, that could offer clues for further investigations into eco-adaptability of heterophyllous woody plants.
查看更多>>摘要:There is an increasing awareness of the adverse environmental effects of the intensive practices used in modern crop farming, such as those that cause greenhouse gas emissions and nutrient leaching. Harnessing beneficial microbes by changing planting practices presents a promising strategy for optimizing plant growth and agricultural sustainability. However, the characteristics of soil microorganisms under different planting patterns remain uncertain. We conducted a study of soil bacterial structure and function under monoculture vs. poly culture planting regimes using 16S rRNA gene sequencing on the Qinghai-Tibet Plateau. We observed substantial variations in bacterial richness, diversity, and relative abundances of taxa between gramineous and leguminous monocultures, as well as between gramineae-legume polycultures. The number of operational taxonomic units and alpha and beta diversity were markedly higher in the leguminous monocultures than in the gramineous monocultures; conversely, network analysis revealed that the interactions among the bacterial genera in the gramineous monocultures were more complex than those in the other two planting regimes. Moreover, nitrogen fixation, soil detoxification, and productivity were increased under the gramineous monocultures; more importantly, low soil-borne diseases (e.g., animals parasitic or symbiont) also facilitated strongly suppressive effects toward soil-borne pathogens. Nevertheless, the gramineae-legume polycultures were prone to nitrate seepage contamination, and leguminous monocultures exhibited strong denitrification effects. These results revealed that the gramineous monoculture is a more promising cropping pattern on the Qinghai-Tibetan Plateau. Understanding the bacterial distribution patterns and interactions of crop-sensitive microbes presents a basis for developing microbial management strategies for smart farming.
查看更多>>摘要:Glutathione (GSH) plays a fundamental role in plant defense. Recent reports showed that enhanced GSH content activates mitogen-activated protein kinases (MPKs). However, the molecular mechanism behind this GSHmediated MPKs expression during environmental challenges is unexplored. Here, we found that under control and combined abiotic stress-treated conditions, GSH feeding activates MPK3 expression in Arabidopsis thaliana by inducing its promoter, as established through the promoter activation assay. Additionally, transgenic A. thaliana overexpressing the LeMPK3 gene (AtMPK3 line) showed increased gamma-ECS expression, which was decreased in mpk3, the MPK3-depleted mutant. An in-gel kinase assay exhibited hyperphosphorylation of Myelin Basic Protein (MBP) in the GSH-fed AtMPK3 transgenic line. Under control and combined abiotic stress treated conditions, expression of transcription factor WRKY40 binding to MPK3 promoter was up-regulated under enhanced GSH condition. Interestingly, GSH feeding was rendered ineffective in altering MPK3 expression in the Atwrky40 mutant, emphasizing the involvement of WRKY40 in GSH-MPK3 interplay. This was further confirmed by a wrky40 co-transformation assay. The immunoprecipitation assay followed by ChIP-qPCR showed a significant increase in the binding of WRKY40 to MPK3 promoter, which further established MPK3-WRKY40 association upon GSH feeding. In conclusion, this study demonstrated that GSH modulates MPK3 expression via WRKY40 in response to stress.
查看更多>>摘要:Cucurbits have been used as phloem research models for many decades because their exudates can be accessed with ease. However, cucurbit plants possess two distinct phloem systems known as the fascicular phloem (FP) and extrafascicular phloem (EFP). Therefore, the molecular composition and function of certain exudates can be misinterpreted due to their unclear origin. To characterize the anatomy and function of the different phloem systems more clearly, we generated specific antibodies against marker proteins (PP1 homologs) allowing the clear identification of the EFP at the organ, tissue and cellular levels by immunological staining. We also used detailed microscopy to determine common and unique anatomical features of the FP and EFP sieve elements (SEs) in cucumber (Cucumis sativus). The comparison of exudation rates and the dynamic viscosity, density and sugar content of the exudates from plants grown in the light and dark revealed the consistent composition and behavior of the EFP exudate even when photosynthesis was prevented, thus differing from the properties of the FP exudate. Furthermore, the analysis of phloem transport using a fluorescein disodium salt showed only wound induced exudation of dye from the EFP, indicating the absence of transport in this tissue. Our results show that it is important to distinguish between the EFP and FP in cucurbits, particularly their differing behaviors in response to wounding.
查看更多>>摘要:Phloem plays a central role in assimilate transport as well as in the transport of several secondary compounds. In order to study the chemical composition of phloem sap, different methods have been used for its collection, including stem incisions, EDTA-facilitated exudation or aphid stylectomy. Each collection method has several advantages and disadvantages and, unfortunately, the reported metabolite profiles and concentrations depend on the method used for exudate collection. This review therefore primarily focusses on sugars, amino acids, inorganic ions and further transported compounds like organic acids, nucleotides, phytohormons, defense signals, and lipophilic substances in the phloem sap obtained by aphid stylectomy to facilitate comparability of the data.
查看更多>>摘要:A total of 11 potential plant growth promoting rhizobacteria previously isolated from naturally stressed environments were evaluated for various traits of interest for a beneficial symbiosis with plants, including colonization ability, biofilm formation, motility, exopolysaccharide production and salt tolerance. The vast majority of the strains were found to possess multiple plant growth promoting traits. Nevertheless, the intensity varied among isolates, with those originated from tomato plants being more efficient colonizers. The strain SAESo11, genetically characterized as a Pseudomonas putida member was selected for further investigation of its potential to alleviate drought stress in tomato seedlings. Inoculation with SAESo11 mitigated the negative effects of drought stress as indicated by growth and photosynthetic indices. Furthermore, bacterial inoculation enhanced H2O2 content and malondialdehyde levels in colonized plants. Drought treatment did not further alter the oxidative status of these plants. Similarly, total phenolic content and antioxidant enzyme activity were induced in plant tissues in response to drought stress only at the absence of inoculum. These results indicated that inoculation with the selected strain imposed plants at a priming state, that enabled them to respond more robustly at the exposure to drought stress and efficiently attenuated the drought-induced injury. This state of plant alertness mediated by SAESo11 occurred at no cost to growth, highlighting its role as a potential plant priming agent.
查看更多>>摘要:Phytoplasmas are sieve-elements restricted wall-less, pleomorphic pathogenic microorganisms causing devastating damage to over 700 plant species worldwide. The invasion of sieve elements by phytoplasmas has several consequences on nutrient transport and metabolism, anyway studies about changes of the mineral-nutrient profile following phytoplasma infections are scarce and offer contrasting results. Here, we examined changes in macro- and micronutrient concentration in tomato plant upon 'Candidatus Phytoplasma solani' infection. To investigate possible effects of 'Ca. P. solani' infection on mineral element allocation, the mineral elements were separately analysed in leaf midrib, leaf lamina and root. Moreover, we focused our analysis on the transcriptional regulation of genes encoding trans-membrane transporters of mineral nutrients. To this aim, a manually curated inventory of differentially expressed genes encoding transporters in tomato leaf midribs was mined from the transcriptional profile of healthy and infected tomato leaf midribs. Results highlighted changes in ion homeostasis in the host plant, and significant modulations at transcriptional level of genes encoding ion transporters and channels.
查看更多>>摘要:Long noncoding RNAs (lncRNAs) play important regulatory roles in caryopsis development and grain size in rice. However, whether there exist differences in lncRNA expression between caryopses located on primary branches (CPB) and caryopses located on secondary branches (CSB) that contribute to their differential development remains elusive. Here, we performed transcriptome-wide analysis to identify 2,273 lncRNAs expressed in CPB and CSB at 0, 5, 12, and 20 days after flowering (DAF). Although these lncRNAs were widely distributed, the majority were located in intergenic regions of the 12 rice chromosomes. Based on gene expression cluster analysis, lncRNAs expressed in CPB and CSB were clustered into two subtypes in a position-independent manner: one includes 0-and 5-DAF CPB and CSB, and 12-DAF CSB; the second includes 12-DAF CPB and 20-DAF CPB and CSB. Furthermore, according to the expression value of each lncRNA, K-means cluster analysis revealed 135 early-stage, 116 middle-stage, and 114 late-stage expression-delayed lncRNAs in CSB. Then, we analyzed the expression values of the expression-delayed lncRNAs and nearby coding genes (100 kb upstream and downstream of the lncRNAs), and found 631 lncRNA-mRNA pairs, including 258 lncRNAs and 571 nearby coding genes, some of which are related to hormone-regulated grain development. These results suggested that expression-delayed lncRNAs in CSB may regulate the development of CPB and CSB, providing insight into the mechanism underlying the developmental differences between CPB and CSB, and the differences in grain yield.
查看更多>>摘要:Selenium (Se) is a micronutrient essential for human and animal health. However, Se is toxic at high levels because the nonspecific substitution of cysteine by selenocysteine could lead to protein malfunction. In an attempt to prevent nonspecific selenocysteine incorporation into proteins, we simultaneously overexpressed the gene encoding selenocysteine lyase from Homo sapiens (HsSL), which specifically catalyzes the decomposition of selenocysteine into elemental Se-0 and alanine, and the gene encoding selenocysteine methyltransferase from Astragalus bisulcatus (AbSMT), which methylates selenocysteine into methylselenocysteine in rice. The transgenic plants showed normal growth under standard conditions. Se treatment resulted in higher levels of alanine and methylselenocysteine in transgenic plants than in wild-type plants, which indicated that this approach might have successfully redirected Se flow in the plant. Overexpression of HsSL and AbSMT in rice also endows transgenic plants with hyposensitivity to Se stress at the seed germination stage. The transgenic plants showed enhanced selenate and selenite tolerance, which was simultaneously supported by fresh weight values. Moreover, our phytoremediation assay revealed that the transgenic plants exhibited greatly improved Se elimination capabilities and accumulated about 38.5% and 128.6% more Se than wild-type plants when treated with selenate and selenite, respectively. This study offers hope that genetically modified plants could play a role in the restoration of Se-contaminated environment.