首页期刊导航|Journal of Plant Physiology
期刊信息/Journal information
Journal of Plant Physiology
Gustav Fischer
Journal of Plant Physiology

Gustav Fischer

0176-1617

Journal of Plant Physiology/Journal Journal of Plant PhysiologySCIISTP
正式出版
收录年代

    Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity

    Zhang, Ming-XuBai, RongNan, MingWang, Chun-Mei...
    14页
    查看更多>>摘要:Soil salinity is a threat to agricultural production worldwide. Oat (Avena sativa L.) is an irreplaceable crop in areas with fragile ecological conditions. However, there is a lack of research on salt tolerance evaluation of oat germplasm resources. Therefore, the purpose of this work was to evaluate the salt tolerance of oat cultivars and investigate the mechanism of salt-tolerant oat cultivars' adaptation to salinity. Salt tolerance of 100 oat cultivars was evaluated, and then two salt-tolerant cultivars and two salt-sensitive cultivars were used to compare their physiological responses and expression patterns of Na+- and K+-transport-related genes under salinity. Principal component analysis and membership function analysis had good predictability for salt tolerance evaluation of oat and other crops. The 100 oat cultivars were clustered into three categories, with three salt tolerance levels. Under saline condition, salt-tolerant cultivars maintained higher growth rate, leaf cell membrane integrity, and osmotic adjustment capability via enhancing the activities of antioxidant enzymes and accumulating more osmotic regulators. Furthermore, salt-tolerant cultivars had stronger capability to restrict root Na+ uptake through reducing AsAKT1 and AsHKT2;1 expression, exclude more Na+ from root through increasing AsSOS1 expression, compartmentalize more Na+ into root vacuoles through increasing AsNHX1 and AsVATP-P1 expression, and absorb more K+ through increasing AsKUP1 expression, compared with salt-sensitive cultivars. The evaluation procedure developed in this work can be applied for screening cereal crop cultivars with higher salt tolerance, and the elucidated mechanism of oat adaptation to salinity lays a foundation for identifying more functional genes related to salt tolerance.

    Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability

    Chardon, FabienDe Marco, FedericaMarmagne, AnneLe Hir, Rozenn...
    14页
    查看更多>>摘要:Phloem and xylem tissues are necessary for the allocation of nutrients and photoassimilates. However, how the long-distance transport of carbon (C) and nitrogen (N) is coordinated with the central metabolism is largely unknown. To better understand how the genetic and environmental factors influence C and N transport, we analysed the metabolite profiles of phloem exudates and xylem saps of five Arabidopsis thaliana accessions grown in low or non-limiting N supply. We observed that xylem saps were composed of 46 or 56% carbohydrates, 27 or 45% amino acids, and 5 or 13% organic acids in low or non-limiting N supply, respectively. In contrast, phloem exudates were composed of 76 or 86% carbohydrates, 7 or 18% amino acids, and 5 or 6% organic acids. Variation in N supply impacted amino acid, organic acid and sugar contents. When comparing low N and non-limiting N, the most striking differences were variations of glutamine, aspartate, and succinate abundance in the xylem saps and citrate and fumarate abundance in phloem exudates. In addition, we observed a substantial variation of metabolite content between genotypes, particularly under high N. The content of several organic acids, such as malate, citrate, fumarate, and succinate was affected by the genotype alone or by the interaction between genotype and N supply. This study confirmed that the response of the transport of nutrients in the phloem and the xylem to N availability is associated with the regulation of the central metabolism and could be an adaptive trait.

    Phloem: At the center of action in plant defense against aphids

    Girija, Anil M.Mohan, VijeeShah, JyotiTwayana, Moon...
    15页
    查看更多>>摘要:The location of the phloem deep inside the plant, the high hydrostatic pressure in the phloem, and the composition of phloem sap, which is rich in sugar with a high C:N ratio, allows phloem sap feeding insects to occupy a unique ecological niche. The anatomy and physiology of aphids, a large group of phytophagous insects that use their mouthparts, which are modified into stylets, to consume large amounts of phloem sap, has allowed aphids to successfully exploit this niche, however, to the detriment of agriculture and horticulture. The ability to reproduce asexually, a short generation time, the development of resistance to commonly used insecticides, and their ability to vector viral diseases makes aphids among the most damaging pests of plants. Here we review how plants utilize their ability to occlude sieve elements and accumulate antibiotic and antinutritive factors in the phloem sap to limit aphid infestation. In addition, we summarize progress on understanding how plants perceive aphids to activate defenses in the phloem.

    An aquaporin gene MdPIP1;2 from Malus domestica confers salt tolerance in transgenic Arabidopsis

    Wang, JingjingYang, LeileiChai, ShuangshuangGuan, Meng...
    9页
    查看更多>>摘要:Aquaporins are known as water channel proteins. In this study, an aquaporin gene MdPIP1;2 was cloned from Malus domestica cv. Qinguan encoding a protein of 289 amino acids that formed the typical structure of aquaporin by six transmembrane domains, two asparagine-proline-alanine motifs, aromatic/arginine filter, and Forger's position. MdPIP1;2 was highly expressed in the water-sensitive or water-requiring tissues, and upregulated by salt and PEG stresses. MdPIP1;2 transgenic Arabidopsis exhibited enhanced salt stress tolerance with less Na (+) accumulation, lower malondialdehyde (MDA) content, lower electrolyte leakage (EL) level, and higher superoxide dismutase (SOD) and peroxidase (POD) activities compared with WT plants. Additionally, transcriptome analysis indicated MdPIP1;2 transgenic Arabidopsis could present healthier growth and development condition probably through regulating morphological structures and accumulating specific secondary metabolites under salt stress. Our results are a useful reference for better understanding the biological function of aquaporin in apple tree, especially in plant response to abiotic stress.

    Overexpression of SlPRE5, an atypical bHLH transcription factor, affects plant morphology and chlorophyll accumulation in tomato

    Li, JingGong, JunZhang, LinchengShen, Hui...
    11页
    查看更多>>摘要:The basic helix-loop-helix (bHLH) transcription factors play vital regulatory roles in a series of metabolic, physiological, and developmental processes of plants. Here, SlPRE5, an atypical bHLH gene, was isolated from tomato. SlPRE5 was noticeably expressed in young leaves, sepals, and flowers. SlPRE5-overexpressing plants exhibited rolling leaves with reduced chlorophyll content, increased stem internode length, leaf angle, and compound leaf length. The water loss rate of mature leaves and the content of starch were significantly reduced, while the content of gibberellin was significantly increased in transgenic plants. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) showed that SlPRE5 could interact with SlAIF1, SlAIF2, and SlPAR1. qRT-PCR and RNA-seq results revealed that the expression levels of genes related to chloroplast development, chlorophyll metabolism, gibberellin metabolism and signal transduction, starch, photosynthesis, and cell expansion were significantly altered in SlPRE5-overexpression plants. Collectively, our results suggest that SlPRE5 is a crucial transcription factor involved in plant morphology and chlorophyll accumulation in tomato leaves.

    Subcellular dynamics and protein-protein interactions of plant sucrose transporters

    Garg, VarshaKuhn, Christina
    8页
    查看更多>>摘要:Although extensively studied for their role in long distance transport, plant sucrose transporters are active not only in the phloem but throughout the plant body. Sucrose transporters of the SUT family were first described to be plasma membrane-resident proteins, but recent investigations revealed that subcellular dynamics of these transporters were part of complex regulatory mechanisms.& nbsp;The yeast two-hybrid split-ubiquitin system, tandem-affinity purification, and bimolecular-fluorescence complementation aided in identification of a complex network of SUT-interacting proteins that led to answers to many open questions. We found, for example, interacting proteins localized to other subcellular compartments. Although sucrose transporters were assumed to be localized mainly on the plasma membrane, and the tonoplast in the case of SUT4, the interaction partners were not exclusively predicted to be plasma membrane proteins, but belonged to the extracellular space (cell wall), intracellular vesicles, the ER, tonoplast, nuclei, and peroxisomes, among other cellular compartments. A subset of the SUT-interacting proteins localized exclusively to plasmodesmata.& nbsp;We conclude that (transient) protein-protein interactions of integral membrane proteins help to sequester SUTs to subcellular compartments, such as membrane microdomains, with specific functions to enable subcellular transport and cell-to-cell trafficking via plasmodesmata. Identification of SNARE proteins (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) and protein disulfide isomerases support the assumption that the protein-protein interaction plays an important role for the subcellular movement of sugar transporters. It becomes apparent that the interaction partners provide a substantial impact on how and where the transporter is localized or processed for either targeting to a specific cellular or extracellular location, or tagging for degradation or recycling.& nbsp;In this review, interacting proteins, as well as the role of oligomeric complex formation, post-translational modification, and stress responses are summarized for SUTs of higher plants.

    Comparative transcriptomics analysis reveals MdGRAS53 contributes to disease resistance against Alternaria blotch of apple

    He, You-leiLan, Li-mingZhao, LinQu, Shen-chun...
    10页
    查看更多>>摘要:Alternaria blotch disease, caused by Alternaria alternata apple pathotype (AAAP), is one of the most prevalent diseases in apple production. To identify AAAP resistance-related genes and provide a theoretical basis for Alternaria blotch disease resistance breeding, we used two apple cultivars, 'Jonathan', a variety resistant to AAAP infection, and 'Starking Delicious', a variety susceptible to AAAP infection, as materials to perform transcriptome sequencing of apple leaves 72 h after AAAP infection. A Venn diagram showed that a total of 5229 DEGs of 'Jonathan' and 4326 DEGs of 'Starking Delicious' were identified. GO analysis showed that these DEGs were clustered into 25 GO terms, primarily "metabolic process" and "catalytic activity." Functional classification analyses of the DEGs indicated that "MAPK signaling pathway-plant pathway" is the most significant metabolic pathway among the top 15 KEGG pathways, followed by the "plant hormone signal transduction" pathway. There are more DEGs in 'Jonathan' that are significantly classified GO terms and KEGG pathways than in `Starking Delicious'. Specifically, 13 DEGs were identified as involved in the GA-GID1-DELLA module, and the expression of MdGRAS53, a homologous gene of DELLA, was significantly upregulated in 'Jonathan' compared with 'Starking Delicious'. Phenotype analysis revealed that exogenous hormone GA3 suppressed apple resistance to AAAP infection and reduced the expression of MdGRAS53. The opposite result was observed for exogenous spraying of paclobutrazol (PAC), an inhibitor of gibberellin synthesis. Overexpression of MdGRAS53 in apple leaves by transient transformation decreased lesion area and the number of spores in leaves infected with AAAP, while silencing MdGRAS53 showed the opposite result. Meanwhile, SA/JA signaling pathway-related genes were upregulated significantly in MdGRAS53-overexpressed leaves and downregulated significantly in MdGRAS53-silenced leaves. The findings suggest that the GA-GID1-DELLA module is involved in apple resistance to AAAP, and MdGRAS53, a DELLA homologous gene, may play a positive role in this resistance by modulating cooperative JA- and SA-dependent pathways.

    Molecular identification and efficacy assessment of a glufosinate-tolerant and brown planthopper-resistant transgenic rice line

    He, GuangcunXu, HuashanLi, PeideChen, Junxiao...
    8页
    查看更多>>摘要:Insect pests and weeds are the two major biotic factors affecting crop yield in the modern agricultural system. In this study, a brown planthopper (BPH) resistance gene (BPH9) and glufosinate tolerance gene (bar) were stacked into a single T-DNA cassette and transformed into an indica rice (Oryza sativa L.) line Guangzhan 63-4S. A stable transgenic line H23 with a single T-DNA insert was generated, with the T-DNA cassette located on chromosome 3. Field resistance trial using H23 revealed high tolerance to glufosinate and excellent resistance to BPH. These results propose H23 as valuable germplasm for BPH-resistance and glufosinate-tolerance breeding in rice.

    The dynamic changes of tracheary elements in an intraspecific quinoa (Chenopodium quinoa) graft

    Deng, ZhuyingWang, XueLiang, DachengLiu, Xiaofang...
    7页
    查看更多>>摘要:Vascular connection is key to successful graft. Little study has been devoted to the behavior of tracheary elements (TEs), the basic component of vascular bundles, during vascular connection between scion and rootstock. Here we report the structural changes of TEs at the graft interface between two quinoa cultivars, Qaidam White-1 (QW1) and Qaidam Red-1 (QR1). Our results showed that TEs in ungrafted plants developed following an ontogenetic sequence, i.e., the annular vessel, helical vessel, scalariform vessel, reticulate vessel, and pitted vessel. However, this process was greatly accelerated in grafted plants, resulting in quick developmental tran-sition of TE wall patterning. At the early stage of intraspecific grafting (e.g., 5 days after grafting), the membrane-like cellular patches were heavily accumulated at the graft interface but quickly retreated within 2-4 days, suggesting an early emergency response to grafting. The TE length in both scion and rootstock was significantly shorter (more than 50% on average, nTE = 747) than the ungrafted plants in the same period. These short TEs were gradually integrated into a long, continuous conduit, thereby enabling the functional vasculature at the graft union. In addition, the pit size was gradually reduced, for example, for the surface area of outer pit aperture, from 12.73 +/- 3.15 to 5.40 +/- 0.30 mu m(2), or for the surface area of inner pit aperture, from 9.34 +/- 3.33 to 1.96 +/- 1.04 mu m(2), in 18 days (npits = 2830). Taken together, the morphological changes of TEs and cellular responses to grafting in the intraspecific grafts seemed to be conservative to other homografts and heterografts, implying that these behavioral changes are highly adaptive to the scion-rootstock interaction.