首页期刊导航|Ultramicroscopy
期刊信息/Journal information
Ultramicroscopy
Elsevier Science B.V.
Ultramicroscopy

Elsevier Science B.V.

0304-3991

Ultramicroscopy/Journal UltramicroscopySCIAHCIISTPEI
正式出版
收录年代

    Continuous illumination picosecond imaging using a delay line detector in a transmission electron microscope

    Lu P.-H.Oelsner A.Wessels T.Murooka Y....
    7页
    查看更多>>摘要:Progress towards analysing transitions between steady states demands improvements in time-resolved imaging, both for fundamental research and for applications in information technology. Transmission electron microscopy is a powerful technique for investigating the atomic structure, chemical composition and electromagnetic properties of materials with high spatial resolution and precision. However, the extraction of information about dynamic processes in the ps time regime is often not possible without extensive modification to the instrument while requiring careful control of the operation conditions to not compromise the beam quality. Here, we avoid these drawbacks by combining a delay line detector with continuous illumination in a transmission electron microscope. We visualize the gyration of a magnetic vortex core in real space and show that magnetization dynamics up to frequencies of 2.3 GHz can be resolved with down to ~122ps temporal resolution by studying the interaction of an electron beam with a microwave magnetic field. In the future, this approach promises to provide access to resonant dynamics by combining high spatial resolution with sub-ns temporal resolution.

    Orientation, pattern center refinement and deformation state extraction through global optimization algorithms

    Zhu C.Kurniawan C.Ochsendorf M.De Graef M....
    15页
    查看更多>>摘要:Global optimization algorithms have been adopted to the simultaneously refinement of orientation and pattern center for electron backscatter diffraction patterns as well as deformation state extraction. The hyperparameter space and mutation schemes of differential evolution (DE) algorithm has been thoroughly investigated and showed to be a more efficient algorithm than the particle swarm optimization (PSO) algorithm. The optimal hyperparameters for DE generally depend on conditions such as the number of variables to be optimized and the size of bounded search space but reasonably close initial values for crossover probability is 0.9, mutation factor is 0.5, population size is ten times the number of variables, and number of iterations is at least 100. Validation on a set of simulated undeformed single crystal nickel patterns reveals a mean accuracy of ≈0.03° and ≈0.01% detector width across a large field of view. In addition, validation using noisy simulated deformed patterns with known deformation state and pattern center shows that the mean accuracy of shear strain and rotation components is ≈0.001 and for the normal strain ≈0.002.

    Wavelength-multiplexed single-shot ptychography

    Goldberger D.Squier J.Barolak J.Durfee C....
    6页
    查看更多>>摘要:We present the first experimental demonstration of wavelength-multiplexing in single-shot ptychography. Specifically, we experimentally reconstruct the complex transmission profile of a wavelength-independent and wavelength-dependent object simultaneously for 532 nm and 633 nm probing wavelengths. In addition, we discuss the advantages of a more general approach to detector segmentation in single-shot ptychography. A minimization to correct for uncertainties in a priori information that is required for single-shot geometries is presented along with a novel probe constraint. Furthermore, this technique is complementary to dual-wavelength interferometry without the need for an external reference. This work is enabling to imaging technologies and applications such as broadband single-shot ptychography, time-resolved imaging by multiplexed ptychography, real-time inspection for laser micro-machining, and plasma imaging.

    Atom probe specimen preparation methods for nanoparticles

    Qu J.Griffith M.J.Zheng R.Ringer S.P....
    8页
    查看更多>>摘要:Revealing the position of materials with chemical selectivity at atomic scale within functional nanoparticles is essential to understand and control their performance and cutting-edge atom probe tomography is a powerful tool to undertake this task. In this paper, we demonstrate three effective methods to prepare the needle-shaped specimens required for atom probe tomography measurements from nanoparticles of different sizes and provide examples of how atom probe can be used to provide data that is critical to their functionality. Samples measured include lithium-ion batteries (LIBs) cathode nanoparticles (300 – 500 nm), nickel-doped silicon dioxide (Ni@SiO2) catalytic nanoparticles (100 – 200 nm) and tin-doped copper (Sn@Cu) catalytic nanoparticles (<100 nm). The methods presented can be used to address the ongoing challenge of specimen preparation from particle samples for atom probe measurement, and they provide high quality data. These methods will broaden the application of atom probe tomography and will provide alternative option for researchers to assess the performance/structure of their functional nanomaterials.

    Event driven 4D STEM acquisition with a Timepix3 detector: Microsecond dwell time and faster scans for high precision and low dose applications

    Jannis D.Hofer C.Gao C.Xie X....
    9页
    查看更多>>摘要:Four dimensional scanning transmission electron microscopy (4D STEM) records the scattering of electrons in a material in great detail. The benefits offered by 4D STEM are substantial, with the wealth of data it provides facilitating for instance high precision, high electron dose efficiency phase imaging via centre of mass or ptychography based analysis. However the requirement for a 2D image of the scattering to be recorded at each probe position has long placed a severe bottleneck on the speed at which 4D STEM can be performed. Recent advances in camera technology have greatly reduced this bottleneck, with the detection efficiency of direct electron detectors being especially well suited to the technique. However even the fastest frame driven pixelated detectors still significantly limit the scan speed which can be used in 4D STEM, making the resulting data susceptible to drift and hampering its use for low dose beam sensitive applications. Here we report the development of the use of an event driven Timepix3 direct electron camera that allows us to overcome this bottleneck and achieve 4D STEM dwell times down to 100 ns; orders of magnitude faster than what has been possible with frame based readout. We characterize the detector for different acceleration voltages and show that the method is especially well suited for low dose imaging and promises rich datasets without compromising dwell time when compared to conventional STEM imaging.

    Principles of electron wave front modulation with two miniature electron mirrors

    Krielaart M.A.R.Kruit P.
    21页
    查看更多>>摘要:We have analyzed the possibilities of wave front shaping with miniature patterned electron mirrors through the WKB approximation. Based on this, we propose a microscopy scheme that uses two miniature electron mirrors on an auxiliary optical axis that is in parallel with the microscope axis. A design for this microscopy scheme is presented for which the two axes can be spatially separated by as little as 1 mm. We first provide a mathematical relationship between the electric potential and the accumulated phase modulation of the reflected electron wave front using the WKB approximation. Next, we derive the electric field in front of the mirror, as a function of a topographic or pixel wise excited mirror pattern. With this, we can relate the effect of a mirror pattern onto the near-field phase, or far field intensity distribution and use this to provide a first optical insight into the functioning of the patterned mirror. The equations can only be applied numerically, for which we provide a description of the relevant numerical methods. Finally, these methods are applied to find mirror patterns for controlled beam diffraction efficiency, beam mode conversion, and an arbitrary phase and amplitude distribution. The successful realization of the proposed methods would enable arbitrary shaping of the wave front without electron–matter interaction, and hence we coin the term virtual phase plate for this design. The design may also enable the experimental realization of a Mach–Zehnder interferometer for electrons, as well as interaction-free measurements of radiation sensitive specimen.

    Dynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution

    Robert H.L.Muller-Caspary K.Lobato I.Van Aert S....
    14页
    查看更多>>摘要:We report a study of scattering dynamics in crystals employing momentum-resolved scanning transmission electron microscopy under varying illumination conditions. As we perform successive changes of the probe focus, multiple real-space signals are obtained in dependence of the shape of the incident electron wave. With support from extensive simulations, each signal is shown to be characterised by an optimum focus for which the contrast is maximum and which differs among different signals. For instance, a systematic focus mismatch is found between images formed by high-angle scattering, being sensitive to thickness and chemical composition, and the first moment in diffraction space, being sensitive to electric fields. It follows that a single recording at one specific probe focus is usually insufficient to characterise materials comprehensively. Most importantly, we demonstrate in experiment and simulation that the second moment μ20+μ02=〈p2〉 of the diffracted intensity exhibits a contrast maximum when the electron probe is focused at the top and bottom faces of the specimen, making the presented concept attractive for measuring local topography. Given the versatility of 〈p2〉, we furthermore present a detailed study of its large-angle convergence both analytically using the Mott scattering approach, and by dynamical simulations using the multislice algorithm including thermal diffuse scattering. Both approaches are in very good agreement and yield logarithmic divergence with increasing scattering angle.

    Crystal lattice image reconstruction from Moiré sampling scanning transmission electron microscopy

    Pofelski A.Bicket I.Botton G.A.
    11页
    查看更多>>摘要:A wide range of reconstruction methods exist nowadays to retrieve data from their undersampled acquisition schemes. In the context of Scanning Transmission Electron Microscopy (STEM), compressed sensing methods successfully demonstrated the ability to retrieve crystalline lattice images from undersampled electron micrographs. In this manuscript, an alternative method is proposed based on the principles of Moiré sampling by intentionally generating aliasing artifacts and correcting them afterwards. The interference between the scanning grid of the electron beam raster and the crystalline lattice results in the formation of predictable sets of Moiré fringes (STEM Moiré hologram). Since the aliasing artifacts are simple spatial frequency shifts applied on each crystalline reflection, the crystal lattices can be recovered from the STEM Moiré hologram by reverting the aliasing frequency shifts from the Moiré reflections. Two methods are presented to determine the aliasing shifts for all the resolved crystalline reflections. The first approach is a prior knowledge-based method using information on the spatial frequency distribution of the crystal lattices (a common case in practice). The other option is a multiple sampling approach using different sampling parameters and does not require any prior knowledge. As an example, the Moiré sampling recovery method detailed in this manuscript is applied to retrieve the crystalline lattices from a STEM Moiré hologram recorded on a silicon sample. The great interest of STEM Moiré interferometry is to increase the field of view (FOV) of the electron micrograph (up to several microns). The Moiré sampling recovery method extends the application of the STEM imaging of crystalline materials towards low magnifications.

    Standard deviation of microscopy images used as indicator for growth stages

    Volokitina A.Marschner F.Gyorok M.Zeppenfeld P....
    9页
    查看更多>>摘要:Photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM) can easily distinguish between organic molecules adsorbed in crystallites or in the wetting layers as well as the bare metal substrate due to their different electronic properties. Already before (and during) the condensation of such solid phases (2D islands or 3D crystallites), there is a dilute 2D gas phase. Such a 2D gas phase consists of molecules, which are highly mobile and diffuse across the surface. The individual molecules are too small to be resolved in PEEM/LEEM images. Here, we discuss, how image features below and above the resolution limit of a PEEM/LEEM affect the mean electron yield and its (normalized) standard deviation. We support our findings with two experimental examples: the deposition of cobalt phthalocyanine (CoPc) on Ag(100) and of perfluoro-pentacene on Ag(110). Our results demonstrate, how a spatial and temporal analysis of image series can be used to obtain information about molecular phases, which cannot be directly resolved in microscopy images.

    Thermal characterization of morphologically diverse copper phthalocyanine thin layers by scanning thermal microscopy

    Trefon-Radziejewska D.Juszczyk J.Krzywiecki M.Horny N....
    9页
    查看更多>>摘要:Morphologically diverse copper phthalocyanine (CuPc) thin layers were thermally characterized by scanning thermal microscopy (SThM). The organic layers with thicknesses below 1 μm were deposited by physical vapor deposition in a high vacuum on the N-BK 7 glass substrates. Four set of samples were fabricated and studied. Atomic Force Microscopy imaging revealed strong differences in the surface roughness, mean grain size/height, as well as distances between grains for the CuPc layers. For quantitative thermal investigations, three active SThM operating modes were applied using either a Wollaston thermal probe (ThP) or KNT ThP as thermal probe heated with a DC, an AC (3ω-SThM) current or their combination (DC/AC SThM). Meanwhile, qualitative analysis was performed by thermal surface imaging. The results of this study revealed a correlation between the morphology and the local thermophysical properties of the examined CuPc thin layers. It was found that the heat transport properties in such layers will deteriorate with the increase of the surface roughness and porosity. Those results can be a valuable contribution to the further development of phthalocyanine-based devices.