查看更多>>摘要:The objective of this research was to evaluate the application of an electronic nose and chemometric analysis to discriminate volatile organic compounds between patients with COVID-19, post-COVID syndrome and controls in exhaled breath samples. A cross-sectional study was performed on 102 exhaled breath samples, 42 with COVID-19, 30 with the post-COVID syndrome and 30 control subjects. Breath-print analysis was performed by the Cyranose 320 electronic nose with 32 sensors. Group data were evaluated by Principal Component Analysis (PCA), Canonical Discriminant Analysis (CDA), and Support Vector Machine (SVM), and the test's diagnostic power was evaluated through a Receiver Operaring Characteristic curve(ROC curve). The results of the chemometric analysis indicate in the PCA a 97.6% (PC1 = 95.9%, PC2 = 1.0%, PC3 = 0.7%) of explanation of the variability between the groups by means of 3 PCs, the CDA presents a 100% of correct classification of the study groups, SVM a 99.4% of correct classification, finally the PLS-DA indicates an observable separation between the groups and the 12 sensors that were related. The sensitivity, specificity of post-COVID vs. controls value reached 97.6% (87.4%-99.9%) and 100% (88.4%-100%) respectively, according to the ROC curve. As a perspective, we consider that this technology, due to its simplicity, low cost and portability, can support strategies for the identification and follow-up of post-COVID patients. The proposed classification model provides the basis for evaluating post-COVID patients; therefore, further studies are required to enable the implementation of this technology to support clinical management and mitigation of effects.
查看更多>>摘要:Herein, a one-pot alkali cutting-assisted synthesis approach has been developed to gain fluorescence (FL) tunable amino functionalized GQDs (NH2-GQDs), which exhibit concentration- and excitation-dependent FL behaviors, due to the self-assembled J-type aggregation effect and different electronic transitions governed by graphene basal plane and functional groups. While NH2-GQDs possess brighter FL emission than pristine GQDs, owning to the functionalization of amino groups with strong electron withdrawing ability. Particularly, the pH-dependent FL behavior of NH2-GQDs further reflects the FL emission mechanism originated from the intrinsic zigzag sites and introduced amino and carboxylic groups, which is available for pH sensing. Moreover, the NH2-GQDs also show a FL quenching upon reaction with tannic acid (TA), resulting in the construction of a FL turn-off TA sensing platform. A good linear relationship is obtained between logarithm of FL intensity (log F) and TA concentration in a linear dynamic range of 1-40 mu M and a limit of detection of 43.3 nM (3s/s, n = 9) is achieved, with a precision of 0.08% RSD at a concentration level of 5 mu M (n = 9). This work features a simple and direct approach to acquire multifunctional nanosensor, providing great potential for further applications in chem/biosensing.
查看更多>>摘要:A sandwich-type electrochemical immunosensor was designed utilizing ferrocene-functionalized cuprous oxide superparticles (Au/Fc@CuxO SPs) as the signal label and graphene supported by hollow carbon balls (HCNs-GR) as the substrate. The CuxO SPs possess a superparticle structure with synergistic properties of isotropy and promising catalytic activity. Ferrocene (Fc) was deposited on the CuxO SPs to act as the electronic transmission medium. The Au/Fc@CuxO SPs played a pivotal role in improving the sensitivity of the immunosensor. The graphene supported by hollow carbon balls (HCNs-GR) was used to modify the electrode surface. The embedding of hollow carbon nanospheres (HCNs) reduced the decrease of the effective surface area caused by the stacking of graphene nanotubes. Meanwhile, the load of carbon balls further increases the surface area of graphene, enabled HCNs-GR to immobilize antibodies more effectively, improved the sensitivity of the immunosensor. The proposed immunosensor showed a linear range from 500 fg/mL to 100 ng/mL, with the detection limit to 25.7 fg/ mL.
查看更多>>摘要:Small molecular contaminants (such as mycotoxins, antibiotics, pesticide residues, etc.) in food and environment have given rise to many biological and ecological toxicities, which has attracted worldwide attention in recent years. Meanwhile, due to the advantages of aptamers such as high specificity and stability, easy synthesis and modification, as well as low cost and immunogenicity, various aptasensors for the detection of small molecular contaminants have been flourishing. An aptasensor as a whole is composed of an aptamer-based target recognizer and a signal transducer, which are fields of concentrated research. In the practical detection applications, in order to achieve the quantitative detection of small molecular contaminants at low abundance in real samples, a large number of signal enhancing strategies have been utilized in the development of aptasensors. Recent years is a vintage period for efficient signal enhancing strategies of aptasensors by the aid of nanomaterials and nucleic acid amplification that are applied in the elements for target recognition and signal conversion. Therefore, this paper meticulously reviews the signal enhancing strategies based on nanomaterials (including the (quasi-)zero dimensional, one-dimensional, two-dimensional and three-dimensional nanomaterials) and nucleic acid amplification (including enzyme-assisted nucleic acid amplification and enzyme-free nucleic acid amplification). Furthermore, the challenges and future trends of the abovementioned signal enhancing strategies for application are also discussed in order to inspire the practitioners in the research and development of aptasensors for small molecular contaminants.
查看更多>>摘要:Carcinoembryonic antigen (CEA) is one of the most widely used tumor marker around the world, it mainly used for gastrointestinal cancers, especially in colorectal malignancy. At present, the detection methods of CEA are mostly based on antigen-antibody binding, whereas these methods were limited by the high costs and long waiting times in massive population tumor screening. During the experiments, we interestingly found that the fluorescence signal would be dramatically altered when the secondary structure of fluorescent modified guanine rich DNA changed. Then we explored the reasons and established a new method for CEA detection, this method brings a simple, fast and cheap sensing platform for detection of biomarkers. It has great potential in screening of tumors among the group and is expected to provide prospective effects for tumor treatment.
查看更多>>摘要:A novel aptamer-functionalized metal-organic framework nanofibrous composite (viz. PAN/UiO@UiO(2)-N-3-aptamer) with a high aptamer coverage density was proposed based on the electrospinning and seeded growth method, and used for specific affinity recognition of trace Microcystin-LR (MC-LR). Heterobifunctional ligand was used to modify the metal-organic framework nanoparticles (MOF NPs) surface, which could passivate the MOF surface with respect to unmodified DNA, followed by coupling massive aptamers on MOF of the solid-phase microextraction (SPME) fiber using click chemistry. Characterizations including morphology, spectra analysis, mechanical stability, binding capacity and specificity were fulfilled. Applied to the analysis of MC-LR, the good selective and sensitive recognition were obtained with the detection limit as low as 0.003 ng/mL, which was better than most non-specific SPME or solid-phase extraction (SPE) protocols. The stability and reproducibility were acceptable, and the intra-day, inter-day and column-to-column relative standard deviations (RSDs) for the recovery of MC-LR were gained in the range from 2.5% to 14.3%, respectively. Satisfactory recoveries of MC-LR in environmental water samples were measured as 96.3 +/- 4.7% - 98.9 +/- 2.7% (n = 3) in tap water, 94.4 +/- 2.5% 96.1 +/- 3.5% (n = 3) in pond water, and 97.0 +/- 2.1% - 97.9 +/- 3.1% (n = 3) in river water, respectively. This work demonstrated that the electrospun nanofibrous composite with massive aptamers would be a better alternative for ultra-trace MC-LR detection with good selectivity, matrix-resistance ability and high resolution.
查看更多>>摘要:The successful application of covalent organic frameworks (COFs) depends on not only their unique chemical structures but also their morphology, size, and architecture. Spherical COFs (SCOFs) are attracted special attention due to the superiority of spherical materials in many applications. However, the synthesis of uniform large-sized SCOFs remains a challenge. Herein, by carefully optimizing the synthesis of a heteropore COF, we find that solvent type and catalyst concentration play important roles in determining the morphology and size of COFs, and eventually achieve the controllable synthesis of large SCOFs with uniform sizes ranging from 200 mu m to 5 mm. The obtained SCOFs keep the dual-pore feature of the heteropore COF and show good stability and high crystallinity. To exhibit the superior application potential of SCOFs, the SCOFs with a size range of 200-300 mu m were demonstrated to be promising solid-phase extraction (SPE) fillers. As-prepared SCOFs-packed SPE column could effectively remove >= 99% phytochrome matrix from 6 different vegetable samples in 10 s, accompanied by 72.56-112.37% recoveries of 33 chemical hazards with different physicochemical properties, thus showing greatly promising application prospects in sample pretreatment of nontargeted food safety analysis. By utilizing acid/base-adjusted reversible color change, millimeter-sized SCOFs were developed as an easy-to-operate and reusable naked-eye indicator of acids.
Naqvi, Syed Muhammad Zaigham AbbasZhang, YanyanAhmed, ShakeelAbdulraheem, Mukhtar Iderawumi...
19页
查看更多>>摘要:Plant hormones are the molecules that control the vigorous development of plants and help to cope with the stress conditions efficiently due to vital and mechanized physiochemical regulations. Biologists and analytical chemists, both endorsed the extreme problems to quantify plant hormones due to their low level existence in plants and the technological support is devastatingly required to established reliable and efficient detection methods of plant hormones. Surface Enhanced Raman Spectroscopy (SERS) technology is becoming vigorously favored and can be used to accurately and specifically identify biological and chemical molecules. Subsistence molecular properties with varying excitation wavelength require the pertinent substrate to detect SERS signals from plant hormones. Three typical mechanisms of Raman signal enhancement have been discovered, electromagnetic, chemical and Tip-enhanced Raman spectroscopy (TERS). Though, complex detection samples hinder in consistent and reproducible results of SERS-based technology. However, different algorithmic models applied on preprocessed data enhanced the prediction performances of Raman spectra by many folds and decreased the fluorescence value. By incorporating SERS measurements into the microfluidic platform, further highly repeatable SERS results can be obtained. This review paper tends to study the fundamental working principles, methods, applications of SERS systems and their execution in experiments of rapid determination of plant hormones as well as several ways of integrated SERS substrates. The challenges to develop an SERS-microfluidic framework with reproducible and accurate results for plant hormone detection are discussed comprehensively and highlighted the key areas for future investigation briefly.
查看更多>>摘要:Domoic acid, namely amnesic shellfish toxin, is a highly neurotoxic substance to marine animals and humankind. To reduce the incidence of poisoning accidents, the exploitation of specific and rapid detection method for domoic acid monitoring is highly required. Herein, an electrochemical molecularly imprinted polymer (MIP) sensor based on polydopamine-reduced graphene oxide/polyacrylamide composite (PDA-rGO/PAM) was constructed successfully to detect domoic acid. The domoic acid molecule could be recognized in imprinted cavities of PAM reversibly through hydrogen bonding. PDA-rGO promoted the loading capacity of PAM and improved the charge transfer rate, which amplified the electrical signal response of the MIP sensor. The screen-printed electrode (SPE) modified with PDA-rGO/PAM displayed satisfactory response toward toxin contaminated sample at a linear range from 1 to 600 nM and a low detection limit of 0.31 nM, demonstrating the prospective application of the transducer as a portable sensing platform for the on-site detection of hazardous marine biotoxin. Moreover, benefiting from the superior specificity and stability of MIP, the fabricated sensor could be utilized to detect the domoic acid content in mussel extracts directly without complex pretreatment operation.
查看更多>>摘要:Chemiluminescence signal amplification (CLSA) is of huge interest because of its sensitive detection in various applications such as food analysis, biomedical diagnosis and environmental monitoring. Due to this, there is a manifold attention to develop rapidly prototyped and miniaturized devices for CLSA. In this context, herein, a novel CLSA approach is demonstrated on a 3D printed microfluidic paper-based analytical device (mu PADs), fabricated using Fused deposition modeling (FDM) printing technology. Influence of working temperature, ranging 30 degrees C-110 degrees C, on CL signal generation from well-established Luminol/Co+2 - H2O2 reaction was analyzed using a screen-printed flexible heater onto the 3D printed reaction platform. A smartphone-based capturing/detection system provided the amenability for a point-of-care testing system. For the first time, strong and stable CLSA was found with about 255% +/- 5% increase in its signal intensity without using any additional external enhancers. The on-site working temperature was directly in proportional to the intensity of CL signal generated from Luminol/Co+2 - H2O2 reaction under optimum conditions, wherein the device had a wide linear range from 50 nM to 1 mu M with a detection limit of 35 nM for H2O2 detection. The reliability of the developed amplification method was tested for practicability to detect the concentration of H2O2 in milk as real sample analysis. Overall, such CLSA mechanism in miniaturized mu PADs will have strong potential for multiple CL based detection and monitoring application.