首页期刊导航|Fish & Shellfish Immunology
期刊信息/Journal information
Fish & Shellfish Immunology
Academic Press
Fish & Shellfish Immunology

Academic Press

1050-4648

Fish & Shellfish Immunology/Journal Fish & Shellfish ImmunologySCIISTP
正式出版
收录年代

    Epinephelus coioides Hsp27 negatively regulates innate immune response and apoptosis induced by Singapore grouper iridovirus (SGIV) infection

    Wei, Jing-GuangQin, Qi-WeiSun, Hong-YanLi, Pin-Hong...
    11页
    查看更多>>摘要:Heat shock proteins (Hsps) are important for maintaining protein homeostasis and cell survival. In this study, Hsp27 of Epinephelus coioides, an economically important marine fish in China and Southeast Asian countries, was characterized. E. coioides Hsp27 contains the consered ACD_HspB1_like domain and three p38 MAPK phosphorylation sites, located at Thr-13, Thr-60 and Ser-167. E. coioides Hsp27 was distributed in both the cytoplasm and nucleus, its mRNA was detected in all 14 tissues examined, and its expression was up-regulated after challenge with Singapore grouper iridovirus (SGIV), an important E. coioides pathogen. Over-expression of E. coioides Hsp27 significantly upregulated the expressions of the key SGIV genes (VP19, LITAF, MCP, and ICP18), downgraded the expressions of the E. coioides immune factors (IRF3, IRF7, ISG15, and TRAF6) and proinflammatory factors (TNF-alpha, IL-8), downgraded the activation of nuclear factor kappa-B (NF-kappa B) and activator protein-1 (AP-1), and substantially inhibited the cell apoptosis induced by SGIV infection. These data illustrated that E. coioides Hsp27 might be involved in SGIV infection by negatively regulating the innate immune response.

    TAK1 of blunt snout bream promotes NF-kappa B activation via interaction with TAB1 in response to pathogenic bacteria

    Xu, YandongZhu, BiZhang, RuLiu, Yang...
    16页
    查看更多>>摘要:Transforming growth factor-beta activated kinase-1 (TAK1) is an important upstream signaling molecules involved in the NF-kappa B signaling pathway. TAK1 interacts with TAB1 to form the TAK1-TAB1 complex, which elicits NF-kappa B activation through a series of cascade reactions in mammals. However, the function of TAK1 in blunt snout bream (Megalobrama amblycephala (maTak1) and the effects of their interaction between TAK1 and TAB1 on the NF-kappa B activation still remains largely unknown. In the present study, maTak1 was cloned and characterized successfully based on transcriptome data. Its open reading frame is composed of 1626 nucleotides and the predicted maTAK1 protein contains 541 amino acids, which includes an N-terminal Serine/Threonine protein kinases (S/TKc) and a C-terminal coiled-coil region. Phylogenetic analysis showed that maTAK1 were clustered with those of other teleosts. MaTak1 displayed ubiquitous transcriptional expression in all the examined tissues of healthy blunt snout bream but with varied expression levels. And maTrak1 expression was dramatically enhanced in different tissues and MAF cells after LPS stimulation and A. hydmphila challenge. The result from subcellular localization analysis indicated that both maTAK1 and maTAB1 were cytoplasmic protein. The activity of NF-kappa B promoter could not be induced by overexpression of maTak1 or maTab1 alone, however, it could be enhanced by co-expression of maTak1 and maTab1. Co-immunoprecipitation and subcellular co-localization assay revealed that maTAK1 can combine with maTAB1 directly. The transcriptional expression level of proinflammatory cytokines (IL-1 beta, IL-6 and IL-8) increased distinctly after the overexpression of maTak1 and maTab1 . Taken together, the data obtained in this study demonstrated that the direct interaction between maTAK1 and maTAB1 might play a pivotal role in mediating host innate immune response to pathogen invasion by the production of pro-inflammatory cytokines via NF-kappa B signaling pathway, which might lay a solid foundation for the establishment of novel therapeutic approach to combat bacterial infection in fish.

    Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of pearl gentian grouper (Epinephelus fuscoguttatus female x Epinephelus lanceolatus male)

    Liu, HongyuTan, BeipingXie, ShiweiHuang, Bocheng...
    10页
    查看更多>>摘要:An 8-week feeding trial was conducted to investigate the influence of partial replacement of fishmeal (FM) by black soldier fly (BSF) (Hermetia illucens) on the growth, distal intestine morphology, intestinal flora, and intestinal immune response of pearl gentian grouper (Epinephelus fuscoguttatus female x Epinephelus lanceolatus male). Four diets were formulated, 0% (0 g kg(-1)), 10% (50 g kg(-1)), 20% (100 g kg(-1)) and 30% (150 g kg(-1)) fishmeal were replaced with BSF, named as FM, BSF10, BSF20, BSF30, severally. The study found that, with the increasing dietary BSF levels, growth and feed conversion ratio of fish decreased significantly (P < 0.05). Chitinase and trypsin activities were significantly increased with increasing dietary BSF levels (P < 0.05). With the increasing dietary BSF levels, distal intestinal muscularis thickness and mucosal fold length decreased significantly (P < 0.05), as well as total abundance of intestinal flora. The relative abundance of four phyla and six genera among the top 20 genera were significantly affected by dietary BSF levels (P < 0.05). With the increasing dietary BSF levels, the mRNA levels of nf-kappa bem1, r-cel and il-10 up-regulated significantly (P < 0.05). For fish fed BSF30 diet, the mRNA levels of myd88 and tlr22 were significantly higher than fish fed FM diet (P < 0.05). In conclusion, replacement fishmeal with BSF increased activity of digestive enzymes, but negatively affected growth performance and intestinal health of pearl gentian grouper.

    Full-length transcriptome sequencing of Heliocidaris crassispina using PacBio single-molecule real-time sequencing

    Huang, YongyuZhang, LiliHuang, ShiyuWang, Guodong...
    8页
    查看更多>>摘要:The lack of high-throughput sequencing data makes the research progress of Heliocidaris crassispina slow. Therefore, we used PacBio single-molecule real-time sequencing to generate the first full-length transcriptome. Here, 31,181 isoforms were obtained, with an average length of 2383.20 and a N50 length of 2732 bp. Meanwhile, 764 alternative splicing (AS) events, 5098 long-noncoding RNAs (LncRNAs), 6978 simple sequence repeats (SSRs), and 950 hypothetical transcript factors (TFs) were identified. Moreover, five key innate immune pattern recognition receptors (PRRs), including toll-like receptor (TLR), NACHT domain and leucine-rich repeat (NLR), scavenger receptor cysteine-rich (SRCR), peptidoglycan recognition proteins (PGRP), and gram-negative binding proteins (GNBP), were searched in the transcriptome. In addition, 37 isoforms enriched in KEGG and GO immune systems were also detected. The study provid abundant data support for the current research on H. crassispina.

    Phenylalanine hydroxylase (PAH) plays a positive role during WSSV and Vibrio parahaemolyticus infection in Litopenaeus vannamei

    Yao, YuanmaoShi, LiliXiao, WeiGuo, Sixin...
    11页
    查看更多>>摘要:Phenylalanine hydroxylase (PAH) is involved in immune defence reactions by providing the starting material, tyrosine, to synthesise catecholamines and melanin. PAH is an important metabolic enzyme of aromatic amino acids and the rate-limiting enzyme in the hydroxylation of amino acid phenylalanine to tyrosine. In the present study, a PAH gene, LvPAH, was cloned and identified from Litopenaeus vannamei. The open reading frame (ORF) of LvPAH was 1383 bp, encoding a protein of 460 amino acids comprised of an ACT domain and a Biopterin_H domain. LvPAH was constitutively expressed in healthy L. vannamei, with the highest expression levels in the eyestalk and the lowest in the hepatopancreas. Both white spot syndrome virus (WSSV) and Vibrio parahaemolyticus infection upregulated LvPAH expression in hemocytes, hepatopancreas and gills of L. vannamei. Inhibition of LvPAH resulted in a significantly lower survival rate of L. vannamei after WSSV infection than the control group, consistent with the observation that WSSV viral load was significantly higher in LvPAH-silenced L. vannamei. After a V. parahaemolyticus challenge, there was no significant difference between the survival rate of LvPAH-silenced and the control L. vannamei. However, the load of V. parahaemolyticus in LvPAH-silenced L. vannamei was significantly higher than the control population for L. vannamei. The effect of LvPAH on L. vannamei from a neuroendocrinological perspective was assessed by measuring L-DOPA, dopamine (DA) and noradrenaline (NE) levels in the hemocytes after the knockdown of LvPAH. The results showed that phenoloxidase (PO), L-DOPA and DA levels in the hemolymph of LvPAH-silenced L. vannamei were significantly decreased starting from 24hpi. In contrast, the NE levels in the hemolymph of shrimp decreased significantly at first and then increased. The results suggest that LvPAH may play an important role in antiviral and bacterial immunity in L. vannamei.

    Comparative proteomic profiling in Chinese shrimp Fenneropenaeus chinensis under low pH stress

    He, YuyingWang, QiongLi, JianLi, Zhaoxia...
    10页
    查看更多>>摘要:Lower pH gives rise to a harmful stress to crustacean. Here, we analyzed the proteomic response of Fenneropenaeus chinensis from control pH (pH value 8.2) and low pH (pH value 6.5) - treated groups by employing absolute quantitation-based quantitative proteomic (iTRAQ) analysis. Among the identified proteins, a total of 76 proteins differed in their abundance levels, including 45 upregulated and 31 downregulated proteins. The upregulation of proteins like citrate synthase, cytochrome c oxidase, V-type proton ATPase, glyceraldehyde-3-phosphate dehydrogenase and fructose 1,6-bisphosphate-aldolase as well as the enrichment of the DEPs in multiple metabolic processes and pathways illustrated that increased energy and substrates metabolism was essential for F. chinensis to counteract low pH stress. Ion transporting related proteins, such as Na+/K+/2Cl(-) cotransporter and calmodulin, participated in the homeostatic maintenance of pH in F. chinensis. There were significant downregulation expressions of lectin, lipopolysaccharide- and beta-1,3-glucan binding protein, chitinase, cathepsin L and beta-glucuronidase, which indicating the immune dysfunction of F. chinensis when exposure to low pH condition. These findings can extend our understanding on the defensive mechanisms of the low pH stress and accelerate the breeding process of low pH tolerance in F. chinensis.

    CgRab1 regulates Cgcathepsin L1 expression and participates in the phagocytosis of haemocytes in oyster Crassostrea gigas

    Liu, YuWang, WeilinLi, ChenghuaZhang, Chi...
    11页
    查看更多>>摘要:Rab protein plays an important role in a variety of cellular activities, especially the fusion process of the inner membrane during endocytosis. In the present study, a Rab1 protein (CgRab1) was identified from the Pacific oyster Crassostrea gigas. The full-length cDNA sequence of CgRab1 was of 2248 bp with an open reading frame of 618 bp, encoding a polypeptide of 205 amino acids containing a Rab domain. The deduced amino acid sequence of CgRab1 shared 94.2% and 89.3% identity with Rab1 from Pomacea canaliculata and Homo sapiens respectively. In the phylogenetic tree, CgRab1 was firstly clustered with the Rab1s from Aplysia californica and Pomacea canaliculata to form a sister group with Rab1 from invertebrates. The recombinant CgRab1 protein (rCgRab1) was able to bind GTP. The mRNA transcripts of CgRab1 were highly expressed in oyster haemocytes, and its expression level in oyster haemocytes was significantly up-regulated at 24 h after the stimulations with Vibro splendidus, which was 2.43-fold (p < 0.01) of that in the control group. After the expression of CgRab1 was knocked down (0.38-fold of that in EGFP-RNAi experimental group) by RNAi,the protein expression of Cgca-thepsin L1 were reduced (0.63-fold, p < 0.01) compared with that in EGFP-RNAi experimental group. The phagocytic rate and phagocytic index of haemocytes in CgRab1-RNAi oysters decreased after V. splendidus stimulation, which was 0.50-fold (p < 0.01) and 0.58-fold (p < 0.01) of that in EGFP-RNAi experimental group. These results indicated that CgRab1 was involved in the process of haemocytes phagocytosis by regulating the expression of Cgcathepsin L1 in oyster C. gigas.

    Blood cell characterization and transcriptome analysis reveal distinct immune response and host resistance of different ploidy cyprinid fish following Aeromonas hydrophila infection

    Xiong, Ning-XiaOu, JieFan, Lan-FenKuang, Xu-Ying...
    13页
    查看更多>>摘要:Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila infection could decrease blood cell numbers, promote blood cell damage as well as alter the levels of alkaline phosphatase (ALP), lysozyme (LZM), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in immune-related tissues of red crucian carp (RCC, 2 N = 100) and triploid cyprinid fish (3 N fish, 3 N = 150). In addition, the significant alternation of antioxidant status was observed in PBMCs isolated from RCC and 3 N following LPS stimulation. The core differential expression genes (DEGs) involved in apoptosis, immunity, inflammation and cellular signals were coexpressed differentially in RCC and 3 N following A. hydrophila challenge. NOD-like receptor (NLR) signals appeared to play a critical role in A. hydrophila-infected fish. DEGs of NLR signals in RCCah vs RCCctl were enriched in caspase-1-dependent Interleukin-113 (IL-113) secretion, interferon (IFN) signals as well as cytokine activation, while DEGs of NLR signals in 3Nah vs 3Nctl were enriched in caspase-1-dependent IL-113 secretion and antibacterial autophagy. These results highlighted the differential signal regulation of different ploidy cyprinid fish to cope with bacterial infection.

    SCFAs improve disease resistance via modulate gut microbiota, enhance immune response and increase antioxidative capacity in the host

    Li, ShipoHeng, XingGuo, LiyunLessing, Duncan James...
    9页
    查看更多>>摘要:To evaluate the effects of dietary short chain fatty acids (SCFAs) on the intestinal health and innate immunity in crucian carp, a six-week feeding trial was carried out with following treatments: basal diet (BD), basal diet supplementation with 1% sodium acetate (BDSA), basal diet supplementation with 1% sodium propionate (BDSP) and basal diet supplementation with 1% sodium butyrate (BDSB). The results showed dietary BDSA, BDSP and BDSB could protect the host against oxidative stress by improving the activity of certain antioxidative enzymes (T-SOD, GSH-Px and CAT). Additionally, dietary SCFAs could enhance mucosal and humoral immune responses by improving certain innate immune parameters in serum and skin mucus productions (IgM, ACH50 and T-SOD). Furthermore, dietary BDSA and BDSP could up-regulate the expression of immune related genes (TNF-alpha, TGF-beta and IL-8) and tight junction protein genes (occludin and ZO-1). Dietary BDSB could also elevate the expression of IL-8, TGF-beta, ZO-1 and Occludin in the midgut. Although dietary differences of SCFAs didn't alter the alpha-diversity of the intestinal flora, they altered the core microbiota. Finally, the challenge trial showed that dietary basal diet supplementation with SCFAs could protect zebrafish against Aeromonas hydrophila. These results suggest that dietary SCFAs could improve innate immunity, modulate gut microbiota and increase disease resistance in the host, which indicated the potential of SCFAs as immunostimulants in aquaculture.

    Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish

    Rohani, Md FazleIslam, S. M. MajharulHossain, Md KabirFerdous, Zannatul...
    21页
    查看更多>>摘要:Aquaculture plays an increasingly significant role in improving the sustainability of global fish production. This sector has been intensified with the advent of new husbandry practices and the development of new technology. However, the increasing intensification and indiscriminate commercialized farming has enhanced the vulnerability of cultivated aquatic species to damage from pathogens. In efforts to confront these various diseases, frequent use of drugs, antibiotics, chemotherapeutics, and agents for sterilization have unintentionally added to the risk of transmission of pathogens and harmful chemical compounds to consumers. Some natural dietary supplements are believed to have the potential to offset this setback in aquaculture. Application of bio-friendly feed additives such as probiotics, prebiotics and synbiotics are becoming popular dietary supplements with the potential to not only improve growth performance, but in some cases can also enhance immune competence and the overall well-being of fish and crustaceans. The present review discusses and summarizes the effects of probiotics, prebiotics and synbiotics application on growth, stress mitigation, microbial composition of intestine, immune system and health condition of aquatic animals in association with existing constraints and future perspectives in aquaculture.