查看更多>>摘要:Abstract Recently, unmanned aerial vehicle (UAV) acts as the aerial mobile edge computing (MEC) node to help the battery-limited Internet of Things (IoT) devices relieve burdens from computation and data collection, and prolong the lifetime of operating. However, IoT devices can ONLY ask UAV for either computing or caching help, and collaborative offloading services of UAV are rarely mentioned in the literature. Moreover, IoT device has multiple mutually independent tasks, which make collaborative offloading policy design even more challenging. Therefore, we investigate a UAV-enabled MEC networks with the consideration of multiple tasks either for computing or caching. Taking the quality of experience (QoE) requirement of time-sensitive tasks into consideration, we aim to minimize the total energy consumption of IoT devices by jointly optimizing trajectory, communication and computing resource allocation at UAV, and task offloading decision at IoT devices. Since this problem has highly non-convex objective function and constraints, we first decompose the original problem into three subproblems named as trajectory optimization (PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {P}_{\mathbf {T}}$$\end{document}), resource allocation at UAV (PR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {P}_{\mathbf {R}}$$\end{document}) and offloading decisions at IoT devices (PO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {P}_{\mathbf {O}}$$\end{document}) and then propose an iterative algorithm based on block coordinate descent method to cope with them in a sequence. Numerical results demonstrate that collaborative offloading can effectively reduce IoT devices’ energy consumption while meeting different kinds of offloading services, and satisfy the QoE requirement of time-sensitive tasks at IoT devices.
查看更多>>摘要:Abstract Ultra-dense networks (UDNs) have become an important architecture for the fifth generation (5G) networks. A large number of small base stations (SBSs) are deployed to provide high-speed and seamless connections for users in the network. However, the advantage of increasing the system capacity brought by the dense distribution of SBSs comes at the cost of severe inter-cell interference. Although the user-centric virtual cell method has been proposed to solve the interference problem, some challenges have been encountered in practical applications. For example, inter-cell interference still exists to a certain extent, and the cell load may be imbalance. Hence, under the virtual cell architecture, we propose a quality of service (QoS)-based joint user association and resource allocation scheme in UDNs. In order to mitigate the interference, balance cell load and improve the system throughput, a non-convex NP-hard problem is formulated. To effectively solve this problem, we decouple the formulated problem into three sub-problems: user association, physical resource block (PRB) allocation and power allocation. First, we consider the QoS requirements of user equipment (UE) and perform user association based on the PRB estimation method. Then, based on the overlapped virtual cells constructed, we propose a graph-based PRB allocation scheme for reducing virtual inter-cell interference. Moreover, we solve power allocation sub-problem by using the difference of concave (DC) programing method. The simulation results show that our proposed scheme is superior to other schemes in terms of user rates, cell load and system throughput.
查看更多>>摘要:Abstract The excellent performance of geometric positioning of a newly launched satellite will greatly broaden its application field. Launched on January 15, 2020, the Hongqi-1-H9 wide-range satellite is the largest sub-meter-level satellite worldwide and the first ton-level commercial remote sensing satellite in China, with a resolution of less than 1?m and a swath width of 136?km. This study was aimed at assessing the geometric positioning accuracy of this newly launched satellite considering three aspects, namely, the circle error accuracy, rational polynomial coefficient-based direct geometric positioning accuracy and ground control point-based absolute positioning accuracy under urban, plain, and mountainous areas, with different topographies. The results of the conducted experimental investigation indicated that the Hongqi-1-H9 satellite could exhibit a high positioning accuracy in planar and vertical directions for different terrains. In particular, for our experimental?areas with a low topography and few surface structures, the geometric positioning accuracy of the Hongqi-1-H9 satellite imagery was less than 4m and 2?m in the planimetry and elevation directions, respectively. These characteristics can promote the application of the Hongqi-1-H9 satellite images in agricultural surveys, target detection, and land surveys, among other domains.
查看更多>>摘要:Abstract With the scale of Internet of Things (IoT) continues to increase, it brings big challenges for service selection in a large-scale IoT. For solving this problem, a service selection method based on the enhanced genetic algorithm is proposed in this paper. To decrease the scale of service selection, this paper uses the lexicographic optimization approach and quality of service (QoS) constraint relaxation technique to find the candidate service with height QoS. Then, the IoT service selection problem is transformed into a single-objective optimization problem adopting a simple weighting method, and the final composite service meeting the user's QoS needs are obtained from the candidate service. The simulation results show that the proposed algorithm can efficiently and quickly achieve a composite service satisfying user's QoS needs, and is more suitable for solving the service composite problem in large-scale IoT services.
查看更多>>摘要:Abstract For the airports worldwide, it is important to establish a "passenger integrity system" based on the basic information of passengers and their related credit system. Correspondingly, this paper develops a new risk assessment model for the passenger graded security check by introducing several new technologies to obtain the passengers’ real-time status information as well as historical data. We first propose to deploy a variety of 5G-IoT devices to monitor the passengers in real time, including high-definition cameras, millimeter-wave security detectors, etc. We then rely on machine learning to analyze the passenger risk level and integrate improved analytic hierarchy process (AHP) with group decision theory, namely GD-AHP. According to the risk level, the passengers can be classified into known, ordinary and dangerous targets. The differentiated handling of different targets could significantly save the time of security check and improve the passenger experience.
查看更多>>摘要:Abstract In stock farming, the body size parameters and weight of yaks can reasonably reflect the growth and development characteristics, production performance and genetic characteristics of yaks. However, it is difficult for herders to measure the body size and weight of yaks by traditional manual methods. Fortunately, with the development of edge computing, herders can use mobile devices to estimate the yak’s body size and weight. The purpose of this paper is to provide a machine vision-based yak weight estimation method for the edge equipment and establish a yak estimation comprehensive display system based on the user’s use of the edge equipment in order to maximize the convenience of herdsmen’s work. In our method, a set of yak image foreground extraction and measurement point recognition algorithm suitable for edge equipment were developed to obtain yak’s measurement point recognition image, and the ratio between body sizes was transmitted to the cloud server. Then, the body size and weight of yaks were estimated using the data mining method, and the body size estimation data were constantly displayed in the yak estimation comprehensive display system. Twenty-five yaks in different age groups were randomly selected from the herd to perform experiments. The experimental results show that the foreground extraction method can obtain segmentation image with good boundary, and the yak measurement point recognition algorithm has good accuracy and stability. The average error between the estimated values and the actual measured values of body height, oblique length, chest depth, cross height and body weight is 1.95%, 3.11%, 4.91%, 3.35% and 7.79%, respectively. Compared with the traditional manual measurement method, the use of mobile end to estimate the body size and weight of yaks can improve the measurement efficiency, facilitate the herdsmen to breed yaks, reduce the stimulation of manual measurement on yaks and lay a solid foundation for the fine breeding of yaks in Sanjiangyuan region.
查看更多>>摘要:Abstract In order to improve the intelligence of the medical system, this paper designs and implements a secure medical big data ecosystem on top of the Hadoop big data platform. It is designed against the background of the increasingly serious trend of the current security medical big data ecosystem. In order to improve the efficiency of traditional medical rehabilitation activities and enable patients to maximize their understanding of their treatment status, this paper designs a personalized health information system that allows patient users to understand their treatment and rehabilitation status anytime and anywhere, and all medical health data distributed in different independent medical institutions to ensure that these data are stored independently. As a distributed accounting technology for multi-party maintenance and backup information security, blockchain is a good breakthrough point for innovation in medical data sharing. In this paper, the system realizes the personal health data centre on the Hadoop big data platform, and the original distributed data are stored and analyzed centrally through the data synchronization module and the independent data acquisition system. Utilizing the advantages of the Hadoop big data platform, the personalized health information system for stroke has designed to provide personalized health management services for patients and facilitate the management of patients by medical staff.
查看更多>>摘要:Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the twenty-first century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize the energy consumption of sensor nodes to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called energy-efficient hierarchical routing protocol for wireless sensor networks based on fog computing. Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of things applications. In addition, we propose an improved ant colony optimization algorithm that can be used to construct an optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses, and extends the network lifetime. We are aware that in WSNs, the certainty of the sensed data collected by a sensor node can vary due to many reasons such as environmental factors, drained energy, and hardware failures.
查看更多>>摘要:Abstract Short-term passenger flow prediction in urban rail transit plays an important role because it in-forms decision-making on operation scheduling. However, passenger flow prediction is affected by many factors. This study uses the seasonal autoregressive integrated moving average model (SARIMA) and support vector machines (SVM) to establish a traffic flow prediction model. The model is built using intelligent data provided by a large-scale urban traffic flow warning system, such as accurate passenger flow data, collected using the Internet of things and sensor networks. The model proposed in this paper can adapt to the complexity, nonlinearity, and periodicity of passenger flow in urban rail transit. Test results on a Beijing traffic dataset show that the SARI-MA–SVM model can improve accuracy and reduce errors in traffic prediction. The obtained pre-diction fits well with the measured data. Therefore, the SARIMA–SVM model can fully charac-terize traffic variations and is suitable for passenger flow prediction.
Ahmad MuhammadRiaz QaiserZeeshan MuhammadTahir Hasan...
23页
查看更多>>摘要:Abstract Internet of Things (IoT) devices are well-connected; they generate and consume data which involves transmission of data back and forth among various devices. Ensuring security of the data is a critical challenge as far as IoT is concerned. Since IoT devices are inherently low-power and do not require a lot of compute power, a Network Intrusion Detection System is typically employed to detect and remove malicious packets from entering the network. In the same context, we propose feature clusters in terms of Flow, Message Queuing Telemetry Transport (MQTT) and Transmission Control Protocol (TCP) by using features in UNSW-NB15 data-set. We eliminate problems like over-fitting, curse of dimensionality and imbalance in the data-set. We apply supervised Machine Learning (ML) algorithms, i.e., Random Forest (RF), Support Vector Machine and Artificial Neural Networks on the clusters. Using RF, we, respectively, achieve 98.67% and 97.37% of accuracy in binary and multi-class classification. In clusters based techniques, we achieved 96.96%, 91.4% and 97.54% of classification accuracy by using RF on Flow & MQTT features, TCP features and top features from both clusters. Moreover, we show that the proposed feature clusters provide higher accuracy and requires lesser training time as compared to other state-of-the-art supervised ML-based approaches.