首页期刊导航|Eurasip Journal on Wireless Communications and Networking
期刊信息/Journal information
Eurasip Journal on Wireless Communications and Networking
Springer
Eurasip Journal on Wireless Communications and Networking

Springer

1687-1472

Eurasip Journal on Wireless Communications and Networking/Journal Eurasip Journal on Wireless Communications and NetworkingEIISTPSCI
正式出版
收录年代

    Design of intelligent diagnosis system for teaching quality based on wireless sensor network and data mining

    Zhang YanpingHuang Wanwei
    12页
    查看更多>>摘要:Abstract With the popularization of computers and various mobile intelligent terminals, intelligent teaching systems based on learners are becoming more and more popular among learners. The above phenomenon has greatly affected and changed the current teaching quality diagnosis methods and models. However, the author found through investigation that the current intelligent teaching quality diagnosis still has different degrees of deficiencies in the design and implementation. In response to the above problems, this paper proposes a teaching quality intelligent diagnosis model based on the combination of wireless sensor networks and fuzzy comprehensive evaluation algorithms. First of all, this article is based on the wireless sensor network to link various levels of intelligent teaching systems, and constructs the information transmission structure of the teaching intelligent diagnosis system. Secondly, this article uses fuzzy comprehensive evaluation and convolutional neural network algorithms to evaluate and excavate intelligent teaching information. Finally, the model successfully passed the simulation test and simulation application, which can provide intelligent diagnosis of teaching quality for modern intelligent teaching system.

    DSSAM: digitally signed secure acknowledgement method for mobile ad hoc network

    Srivastava AshutoshGupta Sachin KumarNajim MohdSahu Nitesh...
    29页
    查看更多>>摘要:Abstract Mobile ad hoc network (MANET) is an infrastructure-less, self-motivated, arbitrary, self-configuring, rapidly changing, multi-hop network that is self-possessing wireless bandwidth-conscious links without centrally managed router support. In such a network, wireless media is easy to snoop. It is firm to the surety to access any node, easier to insertion of bad elements or attackers for malicious activities in the network. Therefore, security issues become one of the significant considerations for such kind of networks. The deployment of an effective intrusion detection system is important in order to provide protection against various attacks. In this paper, a Digitally Signed Secure Acknowledgement Method (DSSAM) with the use of the RSA digital signature has been proposed and simulated. Three different parameters are considered, namely secure acknowledgment, node authentication, and packet authentication for study. This article observes the DSSAM performance and compares it with two existing standard methods, namely Watchdog and 2-ACK under standard Dynamic Source Routing (DSR) routing environment. In the end, it is noticed that the rate of detection of malicious behaviour is better in the case of the proposed method. However, associated overheads are high. A trade-off between performance and overhead has been considered.

    Impulsive noise modeling and robust receiver design

    Clavier LaurentPeters Gareth W.Septier Fran?oisNevat Ido...
    30页
    查看更多>>摘要:Abstract Interference is an important limitation in many communication systems. It has been shown in many situations that the popular Gaussian approximation is not adequate and interference exhibits an impulsive behavior. This paper surveys the different statistical models proposed for such an interference, that can generally be unified using the class of sub-exponential family of distributions, and its impact on the receiver design. Visualizing the optimal decision boundaries allows one to show the non linear effect induced by impulsive noise models, which explains the significant loss in receiver performance designed under the standard Gaussian approximation. This motivates the need to develop new receivers. We propose a framework to design receivers robust to a variety of interference types, both Gaussian and non-Gaussian. We explore three ways of thinking about such receiver designs: a linear approach; by approximating the noise plus interference distribution; and by mimicking the decision rule distribution directly. Except for the linear approach, the other designs are capable of replicating the non-trivial optimal decision regions to different extents. The new detection algorithms are evaluated via Monte Carlo simulations. We focus on four efficient architectures, including the parameter estimations: Myriad, Normal Inverse Gaussian, p-norm and a direct estimation of the likelihood ratio function. They exhibit good performance, close to the optimal, in a large range of situations demonstrating they may be considered as robust decision rules in the presence of heavy tailed or impulsive interference environments.

    MSCR: multidimensional secure clustered routing scheme in hierarchical wireless sensor networks

    Fang WeidongZhang WuxiongChen WeiLiu Jin...
    20页
    查看更多>>摘要:Abstract For hierarchical wireless sensor network (WSN), the clustered routing protocol can effectively deal with large-scale application requirements, thereby, how to efficiently elect the secure cluster heads becomes very critical. Unfortunately, many current studies only focus on improving security while neglecting energy efficiency and transmission performance. In this paper, a lightweight trust management scheme (LTMS) is proposed based on binomial distribution for defending against the internal attacks. Simultaneously, distance domain, energy domain, security domain and environment domain are considered and introduced to propose a multidimensional secure clustered routing (MSCR) scheme by using dynamic dimension weight in hierarchical WSNs. The simulation results show that LTMS can effectively prevent a malicious node from being elected as a cluster head, and MSCR can achieve a balance between security, transmission performance and energy efficiency under the requirements of environmental applications.

    Private and rateless adaptive coded matrix-vector multiplication

    Bitar RawadXing YuxuanKeshtkarjahromi YasamanDasari Venkat...
    25页
    查看更多>>摘要:Abstract Edge computing is emerging as a new paradigm to allow processing data near the edge of the network, where the data is typically generated and collected. This enables critical computations at the edge in applications such as Internet of Things (IoT), in which an increasing number of devices (sensors, cameras, health monitoring devices, etc.) collect data that needs to be processed through computationally intensive algorithms with stringent reliability, security and latency constraints. Our key tool is the theory of coded computation, which advocates mixing data in computationally intensive tasks by employing erasure codes and offloading these tasks to other devices for computation. Coded computation is recently gaining interest, thanks to its higher reliability, smaller delay, and lower communication costs. In this paper, we develop a private and rateless adaptive coded computation (PRAC) algorithm for distributed matrix-vector multiplication by taking into account (1) the privacy requirements of IoT applications and devices, and (2) the heterogeneous and time-varying resources of edge devices. We show that PRAC outperforms known secure coded computing methods when resources are heterogeneous. We provide theoretical guarantees on the performance of PRAC and its comparison to baselines. Moreover, we confirm our theoretical results through simulations and implementations on Android-based smartphones.

    Joint optimization of computing ratio and access points’ density for mixed mobile edge/cloud computing

    Jing TianqiHe ShiwenYu FeiHuang Yongming...
    19页
    查看更多>>摘要:Abstract Cooperation between the mobile edge computing (MEC) and the mobile cloud computing (MCC) in offloading computing could improve quality of service (QoS) of user equipments (UEs) with computation-intensive tasks. In this paper, in order to minimize the expect charge, we focus on the problem of how to offload the computation-intensive task from the resource-scarce UE to access point’s (AP) and the cloud, and the density allocation of APs’ at mobile edge. We consider three offloading computing modes and focus on the coverage probability of each mode and corresponding ergodic rates. The resulting optimization problem is a mixed-integer and non-convex problem in the objective function and constraints. We propose a low-complexity suboptimal algorithm called Iteration of Convex Optimization and Nonlinear Programming (ICONP) to solve it. Numerical results verify the better performance of our proposed algorithm. Optimal computing ratios and APs’ density allocation contribute to the charge saving.

    A new task offloading algorithm in edge computing

    Zhang ZhenjiangLi ChenPeng ShengLungPei Xintong...
    21页
    查看更多>>摘要:Abstract In the last few years, the Internet of Things (IOT), as a new disruptive technology, has gradually changed the world. With the prosperous development of the mobile Internet and the rapid growth of the Internet of Things, various new applications continue to emerge, such as mobile payment, face recognition, wearable devices, driverless, VR/AR, etc. Although the computing power of mobile terminals is getting higher and the traditional cloud computing model has higher computing power, it is often accompanied by higher latency and cannot meet the needs of users. In order to reduce user delay to improve user experience, and at the same time reduce network load to a certain extent, edge computing, as an application of IOT, came into being. In view of the new architecture after dating edge computing, this paper focuses on the task offloading in edge computing, from task migration in multi-user scenarios and edge server resource management expansion, and proposes a multi-agent load balancing distribution based on deep reinforcement learning DTOMALB, a distributed task allocation algorithm, can perform a reasonable offload method for this scenario to improve user experience and balance resource utilization. Simulations show that the algorithm has a certain adaptability compared to the traditional algorithm in the scenario of multi-user single cell, and reduces the complexity of the algorithm compared to the centralized algorithm, and reduces the average response delay of the overall user. And balance the load of each edge computing server, improve the robustness and scalability of the system.

    Design of running training assistance system based on blockchain technology in wireless network

    Ma Fuxing
    11页
    查看更多>>摘要:Abstract Running exercise can increase the basal metabolic rate and increase the time of aerobic exercise. Based on the current needs of the general public for running auxiliary training, this paper combines wireless sensing and blockchain technology in the design scheme, and designs and implements a running training auxiliary technology. First, it obtains the user's gait information and other related parameters in the process through the wireless sensor network, and optimize the calculation gait in different states through the noise processing algorithm. Then, we use the blockchain technology to design a data transmission and storage plan for the protection and analysis of the user's personal privacy data. The proposed method builds a new type of sports training assistance system for the masses of modern society and contributes to the masses' physical exercise.

    Precipitation cloud identification based on faster-RCNN for Doppler weather radar

    Ran YuanboWang HaijiangTian LiWu Jiang...
    20页
    查看更多>>摘要:Abstract Precipitation clouds are visible aggregates of hydrometeor in the air that floating in the atmosphere after condensation, which can be divided into stratiform cloud and convective cloud. Different precipitation clouds often accompany different precipitation processes. Accurate identification of precipitation clouds is significant for the prediction of severe precipitation processes. Traditional identification methods mostly depend on the differences of radar reflectivity distribution morphology between stratiform and convective precipitation clouds in three-dimensional space. However, all of them have a common shortcoming that the radial velocity data detected by Doppler Weather Radar has not been applied to the identification of precipitation clouds because it is insensitive to the convective movement in the vertical direction. This paper proposes a new method for precipitation clouds identification based on deep learning algorithm, which is according the distribution morphology of multiple radar data. It mainly includes three parts, which are Constant Altitude Plan Position Indicator data (CAPPI) interpolation for radar reflectivity, Radial projection of the ground horizontal wind field by using radial velocity data, and the precipitation clouds identification based on Faster-RCNN. The testing result shows that the method proposed in this paper performs better than the traditional methods in terms of precision. Moreover, this method boasts great advantages in running time and adaptive ability.

    Ciphertext-policy attribute-based encryption with hidden sensitive policy from keyword search techniques in smart city

    Meng FeiCheng LeixiaoWang Mingqiang
    22页
    查看更多>>摘要:Abstract Countless data generated in Smart city may contain private and sensitive information and should be protected from unauthorized users. The data can be encrypted by Attribute-based encryption (CP-ABE), which allows encrypter to specify access policies in the ciphertext. But, traditional CP-ABE schemes are limited because of two shortages: the access policy is public i.e., privacy exposed; the decryption time is linear with the complexity of policy, i.e., huge computational overheads. In this work, we introduce a novel method to protect the privacy of CP-ABE scheme by keyword search (KS) techniques. In detail, we define a new security model called chosen sensitive policy security: two access policies embedded in the ciphertext, one is public and the other is sensitive and hidden. If user's attributes don't satisfy the public policy, he/she cannot get any information (attribute name and its values) of the hidden one. Previous CP-ABE schemes with hidden policy only work on the “AND-gate” access structure or their ciphertext size or decryption time maybe super-polynomial. Our scheme is more expressive and compact. Since, IoT devices spread all over the smart city, so the computational overhead of encryption and decryption can be shifted to third parties. Therefore, our scheme is more applicable to resource-constrained users. We prove our scheme to be selective secure under the decisional bilinear Diffie-Hellman (DBDH) assumption.