首页期刊导航|Eurasip Journal on Wireless Communications and Networking
期刊信息/Journal information
Eurasip Journal on Wireless Communications and Networking
Springer
Eurasip Journal on Wireless Communications and Networking

Springer

1687-1472

Eurasip Journal on Wireless Communications and Networking/Journal Eurasip Journal on Wireless Communications and NetworkingEIISTPSCI
正式出版
收录年代

    A throughput analysis of an energy-efficient spectrum sensing scheme for the cognitive radio-based Internet of things

    Schukat MichaelBarrett EndaMiah Md Sipon
    36页
    查看更多>>摘要:Abstract Spectrum sensing in a cognitive radio network involves detecting when a primary user vacates their licensed spectrum, to enable secondary users to broadcast on the same band. Accurately sensing the absence of the primary user ensures maximum utilization of the licensed spectrum and is fundamental to building effective cognitive radio networks. In this paper, we address the issues of enhancing sensing gain, average throughput, energy consumption, and network lifetime in a cognitive radio-based Internet of things (CR-IoT) network using the non-sequential approach. As a solution, we propose a Dempster–Shafer theory-based throughput analysis of an energy-efficient spectrum sensing scheme for a heterogeneous CR-IoT network using the sequential approach, which utilizes firstly the signal-to-noise ratio (SNR) to evaluate the degree of reliability and secondly the time slot of reporting to merge as a flexible time slot of sensing to more efficiently assess spectrum sensing. Before a global decision is made on the basis of both the soft decision fusion rule like the Dempster–Shafer theory and hard decision fusion rule like the “n-out-of-k” rule at the fusion center, a flexible time slot of sensing is added to adjust its measuring result. Using the proposed Dempster–Shafer theory, evidence is aggregated during the time slot of reporting and then a global decision is made at the fusion center. In addition, the throughput of the proposed scheme using the sequential approach is analyzed based on both the soft decision fusion rule and hard decision fusion rule. Simulation results indicate that the new approach improves primary user sensing accuracy by 13%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13\%$$\end{document} over previous approaches, while concurrently increasing detection probability and decreasing false alarm probability. It also improves overall throughput, reduces energy consumption, prolongs expected lifetime, and reduces global error probability compared to the previous approaches under any condition [part of this paper was presented at the EuCAP2018 conference (Md. Sipon Miah et al. 2018)].

    A secure approach to monitoring emergency health resources

    Rivero-García AlexandraSantos-González IvánHernández-Goya CandelariaCaballero-Gil Pino...
    19页
    查看更多>>摘要:Abstract This proposal presents an optimized, efficient and secure system designed to improve healthcare staff management in emergency situations through a complete tool to classify victims in a emergency situation according the severity of their condition, providing at the same time their location and the best route to reach them. The developed tool consists on a mobile application (assigned to medical and healthcare staff), a web service and Near Field Communication tags (assigned to victims). The mobile application supports secure communication among health staff and implements triage algorithms which result is stored in NFC tags. Apart from this, it helps to indicate which should be the next victim to be treated. The developed web service provides a global view of the emergency status and the current position of victims and staff. Data security is a key objective, overall in health applications; for this reason, tokens are used to protect the triage results before being stored in NFC tags, and the use of IDentity-Based Signcryption provides confidentiality and authentication to communications. Two different signcryption methods are used depending on the communication mode (peer-to-peer or broadcast mode).

    Next generation earth-to-space telecommand coding and synchronization: ground system design, optimization and software implementation

    Abelló RicardBaldi MarcoCarvalho FilipeChiaraluce Franco...
    22页
    查看更多>>摘要:Abstract The Consultative Committee for Space Data Systems, followed by all national and international space agencies, has updated the Telecommand Coding and Synchronization sublayer to introduce new powerful low-density parity-check (LDPC) codes. Their large coding gains significantly improve the system performance and allow new Telecommand services and profiles with higher bit rates and volumes. In this paper, we focus on the Telecommand transmitter implementation in the Ground Station baseband segment. First, we discuss the most important blocks and we focus on the most critical one, i.e., the LDPC encoder. We present and analyze two techniques, one based on a Shift Register Adder Accumulator and the other on Winograd convolution both exploiting the block circulant nature of the LDPC matrix. We show that these techniques provide a significant complexity reduction with respect to the usual encoder mapping, thus allowing to obtain high uplink bit rates. We then discuss the choice of a proper hardware or software platform, and we show that a Central Processing Unit-based software solution is able to achieve the high bit rates requested by the new Telecommand applications. Finally, we present the results of a set of tests on the real-time software implementation of the new system, comparing the performance achievable with the different encoding options.