Sheikh Muhammad UsmanRuttik KalleJ?ntti RikuH?m?l?inen Jyri...
24页
查看更多>>摘要:Abstract The aim of this work is to study the impact of small receiver displacement on a signal propagation in a typical conference room environment at a millimeter wave frequency of 60?GHz. While channel measurements provide insights on the propagation phenomena, their use for the wireless system performance evaluation is challenging. Whereas, carefully executed three-dimensional ray tracing (RT) simulations represent a more flexible option. Nevertheless, a careful validation of simulation methodology is needed. The first target of this article is to highlight the benefits of an in-house built three-dimensional RT tool at 60?GHz and shows the effectiveness of simulations in predicting different characteristics of the channel. To validate the simulation results against the measurements, two different transmitter (Tx) positions and antenna types along with ten receiver (Rx) positions are considered in a typical conference room. In first system configuration, an omnidirectional antenna is placed in the middle of the table, while in the second system configuration a directed horn antenna is located in the corner of the meeting room. After validating the simulation results with the measurement data, in the second part of this work, the impact of a small change, i.e., 20?cm in the receiver position, is studied. To characterize the impact, we apply as performance indicators the received power level, root mean square delay spread (RMS-DS) and RMS angular spread (RMS-AS) in azimuth plane. The channel characteristics are considered with respect to the direct orientation (DO), i.e., the Rx antenna is directed toward the strongest incoming path. Different antenna configurations at the Tx and Rx side are applied to highlight the role of antenna properties on the considered channel characteristics. Especially, in the second system configuration the impact of different antenna half power beamwidth on different considered channel characteristics is highlighted through acquired simulation results. The validation of results shows the RMS error of only 2–3?dB between the measured and simulated received power levels for different Tx configurations in the direction of DO. Results indicate that only a small change of the Rx position may result a large difference in the received power level even in the presence of line-of-sight between the Tx and Rx. It is found that the STD of received power level across the room increases with the decrease in HPBW of the antenna. As can be expected, directed antennas offer lower value of RMS-DS and RMS-AS compared with isotropic antenna.
查看更多>>摘要:Abstract In order to solve the problem between low power of Internet of Things devices and the high cost of cryptography, lightweight cryptography is required. The improvement of the scalar multiplication can effectively reduce the complexity of elliptic curve cryptography (ECC). In this paper, we propose a fast formula for point septupling on elliptic curves over binary fields using division polynomial and multiplexing of intermediate values to accelerate the computation by more than 14%. We also propose a scalar multiplication algorithm based on the step multi-base representation using point halving and the septuple formula we proposed, which significantly reduces the computational cost. The experimental results show that our method is more efficient over binary fields and contributes to reducing the complexity of ECC.
查看更多>>摘要:Abstract As the PHY/MAC-layer IR-HARQ and RLC-layer ARQ error recovery procedures, adopted in LTE, may impose additional delay when their code-block retransmissions occur, the arising question is whether these significantly contribute to IP and consequently RTP packet delays, and finally degrade the overall application-layer end-to-end QoE, especially when voice is transmitted over LTE? With this regard, we propose and demonstrate a VoLTE QoS and QoE test procedure based on PHY/MAC/RLC/IP/TCP-UDP/RTP cross-layer protocol analysis and perceptual speech quality QoE measurements. We identified monotonic relationship between the paired observations: QoE and HARQ RTT, i.e. between the PESQ voice quality rating and the IP/RTP packet latency, for given BLER of the received MAC/RLC code-blocks. Specifically, we found out that, for the HARQ RTT value of about 8?ms, only up to 2 HARQ retransmissions (and consequently no RLC-ARQ one) is appropriate during any voice packet, otherwise delay accumulation might not be accordingly “smoothed out” by jitter/playback buffers along the propagation path.
查看更多>>摘要:Abstract The lack of spectrum resources restricts the development of wireless communication applications. In order to solve the problems of low spectrum utilization and channel congestion caused by the static division of spectrum resource, this paper proposes an optimal linear weighted cooperative spectrum sensing for clustered-based cognitive radio networks. In this scheme, different weight values will be assigned for cooperative nodes according to the SNR of cognitive users and the historical sensing accuracy. In addition, the cognitive users can be clustered, and the users with the better channel characteristics will be selected as cluster heads for gathering the local sensing information. Simulation results show that the proposed scheme can obtain better sensing performance, improve the detection probability and reduce the error probability.
查看更多>>摘要:Abstract The security of wireless routers receives much attention given by the increasing security threats. In the era of Internet of Things, many devices pose security vulnerabilities, and there is a significant need to analyze the current security status of devices. In this paper, we develop WNV-Detector, a universal and scalable framework for detecting wireless network vulnerabilities. Based on semantic analysis and named entities recognition, we design rules for automatic device identification of wireless access points and routers. The rules are automatically generated based on the information extracted from the admin webpages, and can be updated with a semi-automated method. To detect the security status of devices, WNV-Detector aims to extract the critical identity information and retrieve known vulnerabilities. In the evaluation, we collect information through web crawlers and build a comprehensive vulnerability database. We also build a prototype system based on WNV-Detector and evaluate it with routers from various vendors on the market. Our results indicate that the effectiveness of our WNV-Detector, i.e., the success rate of vulnerability detection could achieve 95.5%.
查看更多>>摘要:Abstract Considering the issue with respect to the high data redundancy and high cost of information collection in wireless sensor nodes, this paper proposes a data fusion method based on belief structure to reduce attribution in multi-granulation rough set. By introducing belief structure, attribute reduction is carried out for multi-granulation rough sets. From the view of granular computing, this paper studies the evidential characteristics of incomplete multi-granulation ordered information systems. On this basis, the positive region reduction, belief reduction and plausibility reduction are put forward in incomplete multi-granulation ordered information system and analyze the consistency in the same level and transitivity in different levels. The positive region reduction and belief reduction are equivalent, and the positive region reduction and belief reduction are unnecessary and sufficient conditional plausibility reduction in the same level, if the cover structure order of different levels are the same the corresponding equivalent positive region reduction. The algorithm proposed in this paper not only performs three reductions, but also reduces the time complexity largely. The above study fuses the node data which reduces the amount of data that needs to be transmitted and effectively improves the information processing efficiency.
Vermeulen TomReynders BrechtRosas Fernando E.Verhelst Marian...
23页
查看更多>>摘要:Abstract With the massive growth of wireless networks comes a bigger impact of collisions and interference, which has a negative effect on throughput and energy efficiency. To deal with this problem, we propose an in-band wireless collision and interference detection scheme based on full-duplex technology. To study its performance, we compare its throughput and energy efficiency with the performance of traditional half-duplex and symmetric in-band full-duplex transmissions. Our analysis considers a realistic protocol and overhead modeling, and a measurement-based self-interference model. Our results indicate that our proposed collision detection scheme can provide significant gains in terms of throughput and energy efficiency in large wireless networks. Moreover, when compared to half-duplex and symmetric full-duplex, our analysis shows that this scheme allows up to 45% more nodes in the network for the same energy consumption per bit. These results suggest that this could be an enabling technology towards efficient, dense wireless networks.
查看更多>>摘要:Abstract This paper documents a simple parametric polynomial line-of-sight channel model for 100–450 GHz band. The band comprises two popular beyond fifth generation (B5G) frequency bands, namely, the D band (110–170 GHz) and the low-THz band (around 275–325 GHz). The main focus herein is to derive a simple, compact, and accurate molecular absorption loss model for the 100–450 GHz band. The derived model relies on simple absorption line shape functions that are fitted to the actual response given by complex but exact database approach. The model is also reducible for particular sub-bands within the full range of 100–450 GHz, further simplifying the absorption loss estimate. The proposed model is shown to be very accurate by benchmarking it against the exact response and the similar models given by International Telecommunication Union Radio Communication Sector. The loss is shown to be within ±2 dBs from the exact response for one kilometer link in highly humid environment. Therefore, its accuracy is even much better in the case of usually considered shorter range future B5G wireless systems.
查看更多>>摘要:Abstract The transmission performance of spatial multiplexing cross-polarized MIMO is studied to determine how to increase the capacity of digital terrestrial broadcasting and make it more robust. In this paper, the performance was evaluated in laboratory experiments and large-scale field experiments in central Tokyo under three deployment scenarios. The results showed that the required received power can be improved by 7.3?dB when MIMO is introduced to enhance transmission robustness, i.e., maintaining the same transmission capacity as SISO. Alternatively, the transmission capacity can be doubled by introducing MIMO for the same robustness as SISO, requiring a slight increase in received power of 0.9?dB compared with SISO. The field experiments were performed by using a prototype transmission system for advanced digital terrestrial TV broadcasting in Japan, but the results obtained are also valid for 5G broadcasting. Regarding the feasibility of the advanced terrestrial broadcasting system operating at a target bit rate of about 60 Mbps to distribute a VVC-based 8?K program within a 6-MHz channel bandwidth, an increased received power of 3.7?dB compared with SISO was required for MIMO to achieve a higher transmission capacity in the worst case for 28 reception points evaluated in urban areas.
查看更多>>摘要:Abstract In order to solve the problem of distributed denial of service (DDoS) attack detection in software-defined network, we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse-grained preliminary detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine-grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.