查看更多>>摘要:Bacterial resistance to antibiotics have become one of the most severe threats in global public health, so the development of new-style antimicrobial agents is urgent. In this work, quaternized carbon quantum dots (qCQDs) with broad-spectrum antibacterial activity were synthesized by a simple green "one-pot" method using dimethyl diallyl ammonium chloride and glucose as reaction precursors. The qCQDs displayed satisfactory antibacterial activity against both Gram-positive and gram-negative bacteria. In rat models of wounds infected with mixed bacteria, qCQDs obviously restored the weight of rats, significantly reduced the death of rats from severe infection, and promoted the recovery and healing of infected wounds. Biosafety tests confirmed that qCQDs had no obvious toxic and side effects during the testing stage. The analysis of quantitative proteomics revealed that qCQDs mainly acted on ribosomal proteins in Staphylococcus aureus (Gram-positive bacteria) and significantly down-regulated proteins associated with citrate cycle in Escherichia coli (Gram-negative bacteria). Meanwhile, real-time quantitative PCR confirmed that the variation trend of genes corresponding to the proteins associated with ribosome and citrate cycle was consistent with the proteomic results after treatment of qCQDs, suggesting that qCQDs has a new antibacterial mechanism which is different from the reported carbon quantum dots with antibacterial action. Statement of significance With the development of the research on carbon quantum dots, the application of carbon quantum dots in the field of medicine has attracted extensive attention. In this paper, quaternized carbon quantum dots (qCQDs) with antimicrobial activity prepared by specific methods were studied, including antimicrobial spectrum, antimicrobial mechanism and in vivo antimicrobial application. The antimicrobial mechanism of qCQDs was studied by proteomics and RT-qRCR, and the different mechanisms of qCQDs against Grampositive and Gram-negative bacteria were also found. This study provides a research foundation for the application of carbon quantum dots in antimicrobial field, and also expands the application range of carbon quantum dots in medicine field. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
查看更多>>摘要:Disturbance in redox homeostasis always leads to oxidative damages to cellular components, which inhibits cancer cell proliferation and causes tumor regression. Therefore, synergistic effects arising from cellular redox imbalance together with other treatment modalities are worth further investigation. Herein, a metal-organic framework nanosystem (NMOF) based on coordination between Fe (III) and 4,4,4,4(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid) (TCPP) was synthesized through a one-pot method. After surface capping of silk fibroin (SF) to form NMOF@SF nanoparticles (NPs), this nanoplatform can serve as an eligible nanocarrier to deliver tirapazamine (TPZ), a hypoxia-activated precursor. As-developed NS@TPZ (NST) NPs remained inactive in the normal tissue, whereas became highly active upon endocytosis by tumor cells via glutathione (GSH)-mediated reduction of Fe (III) into Fe (II), further enabling Fe (II)-mediated chemodynamic therapy (CDT). Upon optical laser irradiation, TCPP-mediated photodynamic therapy (PDT) coordinated with CDT to aggravate intracellular oxidative stress. Thus, such reactive oxygen species accumulation and GSH deprivation contributed to a deleterious redox dyshomeostasis. On the other hand, local deoxygenation caused by PDT can increase the cytotoxicity of released TPZ, which significantly improved the integral therapeutic effectiveness relying on the combined redox balance disruption and bioreductive chemotherapy. More importantly, severe immunogenic cell death can be triggered by the combinatorial treatment modalities and the presence of SF, which facilitated an almost complete tumor eradication in vivo . Taken together, this paradigm provides an insightful strategy for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy, which can remarkably enhance antitumor efficacy with negligible adverse effects.
查看更多>>摘要:The existing adverse effects of copper in copper-containing intrauterine devices (Cu-IUDs) have raised concerns regarding their use. These adverse effects include burst release of cupric ions (Cu2+) at the initial stage and an increasingly rough surface of the Cu-IUDs. In this study, we investigated the use of two copper alloys, Cu-38 Zn and H62 as the new upgrading or alternative material for IUDs. Their corrosive properties were studied in simulated uterine fluid (SUF) by using electrochemical methods, with pure Cu as a control. We studied the in vitro long-term corrosion behaviors in SUF, cytotoxicity to uterine cells (human endometrial epithelial cells and human endometrial stromal cells), in vivo biocompatibility and contraceptive efficacy of pure Cu, H62, and Cu-38 Zn. In the first month, the burst release rate of Cu2+ in the Cu-38 Zn group was significantly lower than those in the pure Cu and H62 groups. The in vitro cytocompatibility Cu-38 Zn was better than that of pure Cu and H62. Moreover, Cu-38 Zn showed improved tissue biocompatibility in vivo experiments. Therefore, the contraceptive efficacy of the Cu-38 Zn is still maintained as high as the pure Cu while the adverse effects are significantly eased, suggesting that Cu-38 Zn can be a suitable potential candidate material for IUDs. Statement of significance The existing adverse effects associated with the intrinsic properties of copper-materials for copper-containing intrauterine devices (Cu-IUD) are of concern in their employment. Such as, burst release of cupric ions (Cu2+) at the initial stage and an increasingly rough surface of the Cu-IUD. In this work, Cu alloyed with a high amount of bioactive Zn was used for a Cu-IUD. The Cu-38 Zn alloy exhibited reduced burst release of Cu2+ within the first month compared with the pure Cu and H62. Furthermore, the Cu-38 Zn alloy displayed significantly improved biocompatibility and a much smoother surface. Therefore, high antifertility efficacy of the Cu-38 Zn alloy was well maintained, while the adverse effects are significantly eased, suggesting that the Cu-38 Zn alloy is promising for a Cu-IUD. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.