首页期刊导航|Acta biomaterialia
期刊信息/Journal information
Acta biomaterialia
Elsevier
Acta biomaterialia

Elsevier

1742-7061

Acta biomaterialia/Journal Acta biomaterialiaEIISTPSCI
正式出版
收录年代

    Heterogeneous microstructural changes of the cervix influence cervical funneling

    Moghaddam A.O.Lin Z.Sivaguru M.Phillips H....
    12页
    查看更多>>摘要:? 2021The cervix acts as a dynamic barrier between the uterus and vagina, retaining the fetus during pregnancy and allowing birth at term. Critical to this function, the physical properties of the cervix change, or remodel, but abnormal remodeling can lead to preterm birth (PTB). Although cervical remodeling has been studied, the complex 3D cervical microstructure has not been well-characterized. In this complex, dynamic, and heterogeneous tissue microenvironment, the microstructural changes are likely also heterogeneous. Using quantitative, 3D, second-harmonic generation microscopy, we demonstrate that rat cervical remodeling during pregnancy is not uniform across the cervix; the collagen fibers orient progressively more perpendicular to the cervical canals in the inner cervical zone, but do not reorient in other regions. Furthermore, regions that are microstructurally distinct early in pregnancy become more similar as pregnancy progresses. We use a finite element simulation to show that heterogeneous regional changes influence cervical funneling, an important marker of increased risk for PTB; the internal cervical os shows ~6.5x larger radial displacement when fibers in the inner cervical zone are parallel to the cervical canals compared to when fibers are perpendicular to the canals. Our results provide new insights into the microstructural and tissue-level cervical changes that have been correlated with PTB and motivate further clinical studies exploring the origins of cervical funneling. Statement of significance: Cervical funneling, or dilation of the internal cervical os, is highly associated with increased risk of preterm birth. This study explores the 3D microstructural changes of the rat cervix during pregnancy and illustrates how these changes influence cervical funneling, assuming similar evolution in rats and humans. Quantitative imaging showed that microstructural remodeling during pregnancy is nonuniform across cervical regions and that initially distinct regions become more similar. We report, for the first time, that remodeling of the inner cervical zone can influence the dilation of the internal cervical os and allow the cervix to stay closed despite increased intrauterine pressure. Our results suggest a possible relationship between the microstructural changes of this zone and cervical funneling, motivating further clinical investigations.

    Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison

    Evin M.Sudres P.Weber P.Godio-Raboutet Y....
    11页
    查看更多>>摘要:? 2021 Acta Materialia Inc.Introduction This study aims at identifying mechanical characteristics under bi-axial loading conditions of extracted swine pia mater (PM) and dura and arachnoid complex (DAC). Methods 59 porcine spinal samples have been tested on a bi-axial experimental device with a pre-load of 0.01 N and a displacement rate of 0.05 mm·s?1. Post-processing analysis included an elastic modulus, as well as constitutive model identification for Ogden model, reduced Gasser Ogden Holzapfel (GOH) model, anisotropic GOH model, transverse isotropic and anisotropic Gasser models as well as a Mooney-Rivlin model including fiber strengthening for PM. Additionally, micro-structure of the tissue was investigated using a bi-photon microscopy. Results Linear elastic moduli of 108 ± 40 MPa were found for DAC longitudinal direction, 53 ± 32 MPa for DAC circumferential direction, with a significant difference between directions (p < 0.001). PM presented significantly higher longitudinal than circumferential elastic moduli (26 ± 13 MPa vs 13 ± 9 MPa, p < 0.001). Transversely isotropic and anisotropic Gasser models were the most suited models for DAC (r2 = 0.99 and RMSE:0.4 and 0.3 MPa) and PM (r2 = 1 and RMSE:0.06 and 0.07 MPa) modelling. Conclusion This work provides reference values for further quasi-static bi-axial studies, and is the first for PM. Collagen structures observed by two photon microscopy confirmed the use of anisotropic Gasser model for PM and the existence of fenestration. The results from anisotropic Gasser model analysis depicted the best fit to experimental data as per this protocol. Further investigations are required to allow the use of meningeal tissue mechanical behaviour in finite element modelling with respect to physiological applications. Statement of significance: This study is the first to present biaxial tensile test of pia mater as well as constitutive model comparisons for dura and arachnoid complex tissue based on such tests. Collagen structures observed by semi-quantitative analysis of two photon microscopy confirmed the use of anisotropic Gasser model for pia mater and existence of fenestration. While clear identification of fibre population was not possible in DAC, results from anisotropic Gasser model depicted better fitting on experimental data as per this protocol. Bi-axial mechanical testing allows quasi-static characterization under conditions closer to the physiological context and the results presented could be used for further simulations of physiology. Indeed, the inclusion of meningeal tissue in finite element models will allow more accurate and reliable numerical simulations.

    Mineralized Peyronie's plaque has a phenotypic resemblance to bone

    Kang M.Stoller M.L.Ho S.P.Hennefarth M.R....
    10页
    查看更多>>摘要:? 2021 The Author(s)Mineralized Peyronie's plaque (MPP) impairs penile function. The association, colocalization, and dynamic interplay between organic and inorganic constituents can provide insights into biomineralization of Peyronie's plaque. Human MPPs (n = 11) were surgically excised, and the organic and inorganic constituents were spatially mapped using multiple high-resolution imaging techniques. Multiscale image analyses resulted in spatial colocalization of elements within a highly porous material with heterogenous composition, lamellae, and osteocytic lacuna-like features with a morphological resemblance to bone. The lower (520 ± 179 mg/cc) and higher (1024 ± 155 mg/cc) mineral density regions were associated with higher (11%) and lower (7%) porosities in MPP. Energy dispersive X-ray and micro-X-ray fluorescent spectroscopic maps in the higher mineral density regions of MPP revealed higher counts of calcium (Ca) and phosphorus (P), and a Ca/P ratio of 1.48 ± 0.06 similar to bone. More importantly, higher counts of zinc (Zn) were localized at the interface between softer (more organic to inorganic ratio) and harder (less organic to inorganic ratio) tissue regions of MPP and adjacent softer matrix, indicating the involvement of Zn-related proteins and/or pathways in the formation of MPP. In particular, dentin matrix protein-1 (DMP-1) was colocalized in a matrix rich in proteoglycans and collagen that contained osteocytic lacuna-like features. This combined materials science and biochemical with correlative microspectroscopic approach provided insights into the plausible cellular and biochemical pathways that incite mineralization of an existing fibrous Peyronie's plaque. Statement of significance: Aberrant human penile mineralization is known as mineralized Peyronie's plaque (MPP) and often results in a loss of form and function. This study focuses on investigating the spatial association of matrix proteins and elemental composition of MPP by colocalizing calcium, phosphorus, and trace metal zinc with dentin matrix protein 1 (DMP-1), acidic proteoglycans, and fibrillar collagen along with the cellular components using high resolution correlative microspectroscopy techniques. Spatial maps provided insights into cellular and biochemical pathways that incite mineralization of fibrous Peyronie's plaque in humans.

    Unveiling characteristic proteins for the structural development of beetle elytra

    Murata S.Rivera J.Noh M.Y.Hiyoshi N....
    14页
    查看更多>>摘要:? 2021 Acta Materialia Inc.Beetles possess a set of highly modified and tanned forewings, elytra, which are lightweight yet rigid and tough. Immediately after eclosion, the elytra are initially thin, pale and soft. However, they rapidly expand and subsequently become hardened and often dark, resulting from both pigmentation and sclerotization. Here, we identified changes in protein composition during the developmental processes of the elytra in the Japanese rhinoceros beetle, Trypoxylus dichotomus. Using mass spectrometry, a total of 414 proteins were identified from both untanned and tanned elytra, including 31 cuticular proteins (CPs), which constitute one of the major components of insect cuticles. Moreover, CPs containing Rebers and Riddiford motifs (CPR), the most abundant CP family, were separated into two groups based on their expression and amino acid sequences, such as a Gly-rich sequence region and Ala-Ala-Pro repeats. These protein groups may play crucial roles in elytra formation at different time points, likely including self-assembly of chitin nanofibers that control elytral macro and microstructures and dictate changes in other properties (i.e., mechanical property). Clarification of the protein functions will enhance the understanding of elytra formation and potentially benefit the development of lightweight materials for industrial and biomedical applications. Statement of significance: The beetle elytron is a light-weight natural bio-composite which displays high stiffness and toughness. This structure is composed of chitin fibrils and proteins, some of which are responsible for architectural development and hardening. This work, which involves insights from molecular biology and materials science, investigated changes in proteomic, architectural, and localized mechanical characteristics of elytra from the Japanese rhinoceros beetle to understand molecular mechanisms driving elytra development. In the present study, we identified a set of new protein groups which are likely related to the structural development of elytra and has potential for new pathways for processing green materials.

    Amelioration of acute myocardial infarction injury through targeted ferritin nanocages loaded with an ALKBH5 inhibitor

    Cheng P.Han H.Chen F.Cheng L....
    11页
    查看更多>>摘要:? 2021 Acta Materialia Inc.The roles of m6A RNA methylation and mitochondrial metabolism in acute myocardial infarction (AMI) remain unclear. In this study, we demonstrated that m6A RNA methylation affected ischemia/reperfusion (I/R) injury in AMI through the “Erasers” protein ALKBH5-related metabolic reprogramming, characterized by the inhibition of enzyme activities of the tricarboxylic acid cycle; moreover, a surface-modified bioengineered ferritin nanocage was obtained from Archaeoglobus fulgidus, with a chimeric structure containing 8 lysine residues, SpyTag/SpyCatcher, and the C1q ligand Scarf1, which could disassemble and self-assemble in neutral solutions according to different Mg2+ concentrations. The surface-modified bioengineered ferritin nanocage targeted the dying cells in the infarct area under the guidance of Scarf1. These cells were then phagocytosed through recognition of their TfR1 receptor. Lysosomal escape was achieved through the 8 lysine residues on the nanocage, and the nanocage disassembled based on the differences in intracellular and extracellular Mg2+ concentrations. Finally, the ALKBH5 inhibitor IOX1 was loaded onto the ferritin nanocage and used in the AMI model, and it was found to effectively improve cardiac function. These results provide a potential strategy for the treatment of AMI in the future. Statement of significance: In acute myocardial infarction (AMI) induced by ischemia/reperfusion injury, m6A RNA methylation aggravates the injury through the “Erasers” protein ALKBH5-related metabolic reprogramming. To achieve precise treatment, genetic engineering-based recombinant expression technology was used to obtain a ferritin from Archaeoglobus fulgidus. The obtained ferritin was designated as HAfFtO, and it can disassemble and self-assemble in a neutral solution under different Mg2+ concentrations and achieve lysosomal escape. Three G4S linkers were used to connect SpyTag with HAfFtO to synthesize HAfFtO-ST and recombination Scarf1 containing SpyCatcher structure, namely SC-Sf. According to the SpyTag/SpyCatcher technique, HAfFtO-ST and SC-Sf can form a gentle and firm combination, namely HSSS. The ALKBH5 inhibitor IOX1 was loaded on HSSS to form HSSS-I. HSSS-I effectively improved the cardiac function and decreased the infarct size in AMI.

    ROS-responsive fluorinated polyethyleneimine vector to co-deliver shMTHFD2 and shGPX4 plasmids induces ferroptosis and apoptosis for cancer therapy

    Yang S.Wong K.H.Hua P.He C....
    14页
    查看更多>>摘要:? 2021 Acta Materialia Inc.Ferroptosis is a newly discovered non-apoptotic cell death form but its therapeutic efficacy triggered by traditional iron-based nanomaterials or classic drug inducers has been far from satisfactory due to the high glutathione (GSH) level in cancer cells and insufficient lipid peroxide production. Here we reported a ferroptosis/apoptosis combinational therapy by depleting GSH and downregulating GPX4 to disrupt redox homeostasis and amplify ferroptosis-related oxidation effect. In this study, we developed reactive oxygen species (ROS)-responsive serum-resistant nanoparticles with thioketal-crosslinked fluorinated polyethyleneimine 1.8K (TKPF) as the core, which were wrapped with hyaluronic acid (HA) as the shell (TKPFH NP) to co-deliver shGPX4 and shMTHFD2 plasmids for cancer treatment. The highly efficient and tumor-selective gene carrier TKPFH NPs revealed outstanding transfection efficiency (~100 %) and sustained the efficiency (~50 %) even in media containing 90 % FBS. Mediated by HA, TKPFH NPs actively targeted CD44 receptors, thus enabling efficient uptake by tumor cells and experiencing surface charge conversion to induce subsequent lysosomal escape. Then the TKPF NPs were effectively disintegrated by the abundant ROS in cancer cells, which facilitated the release of plasmids and avoided the cytotoxicity of cationic polymers. shGPX4 plasmid induced ferroptosis by producing ROS and lipid peroxides via downregulating GPX4, while shMTHFD2 triggered apoptosis by modulating NADPH/NADP and depleting GSH of the cancer cells. Moreover, GSH consumption caused by shMTHFD2 indirectly suppressed GPX4 and further augmented ferroptosis, showing synergistic anticancer effect against B16-F10 cells. Taken together, the rationally designed dual-gene loaded TKPFH NPs provided a safe and high-performance platform for enhanced ferroptosis-apoptosis combined anticancer efficacy based on gene therapy. Statement of significance: The therapeutic efficacy of ferroptosis has been far from satisfactory due to high GSH level and insufficient lipid peroxide production in cancer cells. Herein, we reported a ferroptosis/apoptosis combinational therapy by depleting GSH and downregulating GPX4 to disrupt redox homeostasis and amplify ferroptosis-related oxidation effect. ROS-responsive serum-resistant nanoparticles were fabricated with thioketal-crosslinked fluorinated PEI 1.8K (TKPF) as the core and hyaluronic acid (HA) as the shell (TKPFH NP) to co-deliver shGPX4 and shMTHFD2 plasmids. The shGPX4 plasmid induced ferroptosis by producing ROS and lipid peroxides via downregulating GPX4, while shMTHFD2 triggered apoptosis by modulating NADPH/NADP and depleting GSH. The rationally designed dual-gene loaded TKPFH NPs provided a safe and high-performance platform aimed for enhanced ferroptosis-apoptosis combined anticancer efficacy.

    Near infrared light triggered ternary synergistic cancer therapy via L-arginine-loaded nanovesicles with modification of PEGylated indocyanine green

    Wang K.Jiang L.Qiu L.
    12页
    查看更多>>摘要:? 2021 Acta Materialia Inc.L-arginine (L-Arg) is an important nitric oxide (NO) donor, and its exploration in NO gas therapy has received widespread attention. Application of nano-platforms that can efficiently deliver L-Arg and induce its rapid conversion to NO becomes a predominant strategy to achieve promising therapeutic effects in tumor treatment. Herein, an enhanced nano-vesicular system of ternary synergistic treatment combining NO therapy, photodynamic therapy (PDT) along with mild photothermal therapy (MPTT) was developed for cancer therapy. We integrated photosensitizer PEGylated indocyanine green (mPEG-ICG) into polyphosphazene PEP nano-vesicles through co-assembly and simultaneously encapsulated NO donor L-Arg into the vesicle center chambers to form mPEG-ICG/L-Arg co-loaded system IA-PEP. The unique nanostructure of vesicle provided considerable loading capacity for mPEG-ICG and L-Arg with 15.9% and 17.95% loading content, respectively, and efficiently prevented mPEG-ICG and L-Arg from leaking. Significantly, the reactive oxygen species (ROS) was produced by IA-PEP under 808 nm laser irradiation to perform PDT against tumors, which concurrently reacted with L-Arg to release NO and arouse gas therapy effectively. Moreover, the mild heat produced by IA-PEP could exhibit cooperative anti-tumor effect with minimal damage. As a consequence, in vivo antitumor investigation on nude mice bearing xenograft MCF-7 tumors verified the potent anti-tumor efficacy of IA-PEP under 808 nm laser irradiation with complete tumor elimination. Taken together, the IA-PEP nano-vesicle system designed in this work may provide a promising treatment paradigm for synergistic cancer treatment. Statement of significance: Nitric oxide (NO) gas therapy has drawn widespread attention due to its “green” treatment paradigm with negligible side effects. L-arginine (L-Arg) is an important NO donor. However, how to efficiently deliver L-Arg and induce NO generation remains a big challenge since L-Arg is a water-soluble small molecule. Herein, we developed a nano-vesicle system IA-PEP to integrate photosensitizer PEGylated indocyanine green and L-Arg with high loading content and to produce a ternary synergistic treatment combining NO therapy, photodynamic therapy (PDT) along with mild-temperature photothermal therapy (MPTT) under 808 nm laser irradiation. The in vivo investigation on nude mice bearing xenograft MCF-7 tumors verified its potent anti-tumor efficacy with complete tumor elimination.

    Tumor microcalcification-mediated relay drug delivery for photodynamic immunotherapy of breast cancer

    Zheng R.Wang Y.Zhang H.Wu X....
    12页
    查看更多>>摘要:? 2021Spatiotemporal targeting of tumor-associated macrophages (TAMs) and tumor cells is emerging as a promising strategy for tumor therapy. Tumor microcalcifications that specifically bind to bisphosphonates are potentially used to design efficient relay drug delivery nanosystems to achieve spatiotemporal drug modulation. Here, we developed manganese dioxide (MnO2)-embedded and LyP-1 peptide-labeled liposomal nanoparticles (NPs) for photodynamic immunotherapy of breast cancer; zoledronic acid (Zol) was encapsulated in the hydrophilic cavity of liposomes, and a hydrophobic photosensitizer (IR780) was embedded in the phospholipid bilayer of liposomes. These Lipo Zol/IR NPs generated O2 bubbles through MnO2 in response to H2O2 in the tumor microenvironment, leading to the degradation of the liposomal membrane, which triggered the release of Zol and provided O2 for photodynamic therapy. The released Zol attached to microcalcifications and was selectively phagocytosed by TAMs, leading to the induction of death or repolarization of TAMs from the immunosuppressive M2 phenotype to the immunostimulatory M1 phenotype. The remaining liposomal fragments embedded with IR780 then preferentially targeted tumor cells through LyP-1 peptide and produced abundant reactive oxygen species (ROS) under near infrared (NIR) laser irradiation, resulting in the death of tumor cells and mild immune activation. All in vitro and in vivo studies demonstrated the effective photodynamic and immunoregulatory performance of Lipo Zol/IR NPs. Statement of significance: Spatiotemporal targeting of tumor-associated macrophages (TAMs) and tumor cells remains a challenge in tumor photodynamic immunotherapy for promoting synergy and reducing side effects. Here, we developed tumor microcalcification-mediated relay drug delivery nanoliposomes for breast cancer therapy. H2O2 in the tumor microenvironment (TME) triggers the breakage of nanoliposomes, thereby causing the separation of zoledronic acid (Zol) and the photosensitizer IR780 and allowing them to perform their respective functions. Microcalcifications enable Zol to target TAMs, resulting in immunomodulation. LyP-1 guides IR780 to target tumor cells for PDT with adequate O2 supply. These nanoliposomes enable precise spatiotemporal targeting of different types of cells in the TME and promote the synergy between immunotherapy and PDT while ensuring the effectiveness of both methods.

    Encapsulation of doxorubicin prodrug in heat-triggered liposomes overcomes off-target activation for advanced prostate cancer therapy

    Pereira S.Na L.Hudoklin S.Kreft M.E....
    17页
    查看更多>>摘要:? 2021L-377,202 prodrug consists of doxorubicin (Dox) conjugated to a prostate-specific antigen (PSA) peptide substrate that can be cleaved by enzymatically active PSA at the tumor site. Despite the initial promise in phase I trial, further testing of L-377,202 (herein called Dox-PSA) was ceased due to some degree of non-specific activation and toxicity concerns. To improve safety of Dox-PSA, we encapsulated it into low temperature-sensitive liposomes (LTSL) to bypass systemic activation, while maintaining its biological activity upon controlled release in response to mild hyperthermia (HT). A time-dependent accumulation of activated prodrug in the nuclei of PSA-expressing cells exposed to mild HT was observed, showing that Dox-PSA was efficiently released from the LTSL, cleaved by PSA and entering the cell nucleus as free Dox. Furthermore, we have shown that Dox-PSA loading in LTSL can block its biological activity at 37°C, while the combination with mild HT resulted in augmented cytotoxicity in both 2D and 3D PC models compared to the free Dox-PSA. More importantly, Dox-PSA encapsulation in LTSL prolonged its blood circulation and reduced Dox accumulation in the heart of C4-2B tumor-bearing mice over the free Dox-PSA, thus significantly improving Dox-PSA therapeutic window. Finally, Dox-PSA-loaded LTSL combined with HT significantly delayed tumor growth at a similar rate as mice treated with free Dox-PSA in both solid and metastatic PC tumor models. This indicates this strategy could block the systemic cleavage of Dox-PSA without reducing its efficacy in vivo, which could represent a safer option to treat patients with locally advanced PC. Statement of significance: This study investigates a new tactic to tackle non-specific cleavage of doxorubicin PSA-activatable prodrug (L-377,202) to treat advanced prostate cancer. In the present study, we report a nanoparticle-based approach to overcome the non-specific activation of L-377,202 in the systemic circulation. This includes encapsulating Dox-PSA in low temperature-sensitive liposomes to prevent its premature hydrolysis and non-specific cleavage. This class of liposomes offers payload protection against degradation in plasma, improved pharmacokinetics and tumor targeting, and an efficient and controlled drug release triggered by mild hyperthermia (HT) (~42°C). We believe that this strategy holds great promise in bypassing any systemic toxicity concerns that could arise from the premature activation of the prodrug whilst simultaneously being able to control the spatiotemporal context of Dox-PSA cleavage and metabolism.

    A self-assembled nanoplatform based on Ag2S quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by H2O2-activated near-infrared-II fluorescence imaging

    Li C.-Q.Ma M.-W.Zhang B.Chen W....
    14页
    查看更多>>摘要:? 2021 Acta Materialia Inc.A nanoplatform based on Ag2S quantum dots (QDs) and tellurium nanorods (TeNRs) was developed for combined chemo-photothermal therapy guided by H2O2-activated near-infrared (NIR)-II fluorescence imaging. Polypeptide PC10AGRD-modified TeNRs and Ag2S QDs were co-encapsulated in 4T1 cell membrane to prepare a nanoplatform (CCM@AT). Ag2S QDs and TeNRs in the CCM@AT were used as a fluorescence probe and photosensitizer, and a chemotherapeutic prodrug and quenching agent to quench the fluorescence of Ag2S QDs, respectively. After the CCM@AT was specifically targeted to the tumor site, the TeNRs were dissolved by the high concentration of H2O2 at the tumor site to light up the fluorescence of Ag2S QDs for NIR-II fluorescence imaging. In addition, the generated toxic TeO66? molecules decreased ATP production by selective cancer chemotherapy, which is beneficial for photothermal therapy. The elevated temperature due to photothermal therapy in turn promoted the chemical reaction in chemotherapy. In vitro and in vivo toxicity results showed that the CCM@AT possesses high biocompatibility. Compared to single photothermal therapy and chemotherapy, the synergistic chemo-photothermal therapy can effectively suppress the growth of 4T1 tumor. This all-in-one nanoplatform provides a boulevard for the combination therapy of tumors guided by NIR-II fluorescence imaging. Statement of significance: NIR-II fluorescence imaging shows the characteristics of low tissue absorption, reflection, and scattering, which can greatly reduce the influence of autofluorescence in vivo. However, the non-negligible effect of autofluorescence is still observed in fluorescence imaging in vivo. Therefore, there is an urgent need to develop a strategy of controlled release of fluorescence for accurate imaging and tumor therapy. Here, Ag2S quantum dots (QDs) with NIR-II fluorescence emission and good photothermal conversion efficiency are used as a fluorescence probe and photosensitizer, and tellurium nanorods (TeNRs) are used as a chemotherapeutic prodrug and quenching agent to quench the fluorescence of Ag2S QDs. This multiple nanoplatform provides an inspiration for the combination therapy of tumor guided by NIR-II fluorescence imaging.