首页期刊导航|Acta biomaterialia
期刊信息/Journal information
Acta biomaterialia
Elsevier
Acta biomaterialia

Elsevier

1742-7061

Acta biomaterialia/Journal Acta biomaterialiaEIISTPSCI
正式出版
收录年代

    Synergistic anti-tumor efficacy of a hollow mesoporous silica-based cancer vaccine and an immune checkpoint inhibitor at the local site

    Wang X.Li X.Ito A.Ohno T....
    11页
    查看更多>>摘要:? 2022 Acta Materialia Inc.Immune checkpoint inhibitors elicit durable tumor regression in multiple types of tumor, but may induce potential side effects with low response rates in many tumors. Herein, to increase the therapeutic efficacy of immune checkpoint inhibitors, a hollow mesoporous silica (HMS) nanosphere-based cancer vaccine was combined with an immune checkpoint inhibitor, anti-programmed death-ligand 1 (anti-PD-L1) antibody. The HMS nanospheres function as adjuvants that promote dendritic cell activation and antigen cross-presentation. Mice immunized with the HMS-based cancer vaccine show suppressed tumor growth with increased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-2 (IL-2) levels in their spleens compared with those without HMS-based cancer vaccine. Moreover, the HMS-based cancer vaccine synergistically acts with the anti-PD-L1 antibody on the tumor. The combination of an HMS-based cancer vaccine and an antibody markedly decreases the required dose of the immune checkpoint inhibitor. Mice locally administered with the HMS-based cancer vaccine and 1/8 dose of a standard anti-PD-L1 antibody (25 μg/mouse) show comparable anti-tumor effect and significantly increased CD4+ and CD8+ T cell populations, compared with those systemically immunized with the standard anti-PD-L1 antibody done at 200 μg/mouse. Our work presents a promising cancer treatment strategy of combining an immune checkpoint inhibitor with an HMS-based cancer vaccine. Statement of significance: The clinical benefits of checkpoint blockade therapy rekindle the hope of cancer immunotherapy. However, objective response rates in checkpoint blockade therapy remain at about 10–40% owing to multiple immunosuppressive factors. To solve these problems, herein, a hollow mesoporous silica (HMS) nanosphere-based cancer vaccine was combined with an immune checkpoint inhibitor, anti-PD-L1 antibody. The HMS-based cancer vaccine synergistically acts with the anti-PD-L1 antibody on the tumor. Mice locally administered with the HMS-based cancer vaccine and 1/8 dose of a standard anti-PD-L1 antibody (25 μg/mouse) show comparable anti-tumor effect and significantly increased CD4+ and CD8+ T cell populations, compared with those systemically immunized with the standard anti-PD-L1 antibody done at 200 μg/mouse. Our work presents a promising cancer treatment strategy of combining an immune checkpoint inhibitor with an HMS-based cancer vaccine.

    Lipase-triggered drug release from BCL2 inhibitor ABT-199-loaded nanoparticles to elevate anti-leukemic activity through enhanced drug targeting on the mitochondrial membrane

    Yu Z.Shi C.Gao S.Liang B....
    14页
    查看更多>>摘要:? 2022Selective BCL2 inhibitor ABT-199 has been approved to treat hematological malignancies including acute myeloid leukemia (AML). However, acquired drug resistance and severe side effects occur after extended treatment limiting the clinical usage of ABT-199. Here, we successfully encapsulated pure ABT-199 in amphiphilic mPEG-b-PTMC169 block copolymer, forming mPEG-b-PTMC169@ABT-199 nanoparticles (abbreviated as PEG-ABT-199), which presented better aqueous dispersion and higher efficiency of loading and encapsulation than pure ABT-199. We then compared the anti-leukemic ability of pure ABT-199 and PEG-ABT-199 in vitro and in vivo. PEG-ABT-199 had a lower IC50 value compared with pure ABT-199 in MV4-11 and MOLM-13 cell lines. In addition, PEG-ABT-199 significantly induced apoptosis and decreased colony number than pure ABT-199. Most importantly, PEG-ABT-199 markedly reduced leukemic burden, inhibited the infiltration of leukemic blasts in the spleen, and extended the overall survival (OS) in MLL-AF9-transduced murine AML compared with free ABT-199. Meanwhile, the blank PEG169 NP was non-toxic to normal hematopoiesis in vitro and in vivo, suggesting that PEG169 NP is a safe carrier. Mechanistically, PEG-ABT-199 enhanced mitochondria-targeted delivery of ABT-199 to trigger the collapse of mitochondrial membrane potential (MMP), the release of cytochrome c (cyt-c), and mitochondria-based apoptosis. In conclusion, our results suggest that PEG-ABT-199 has more vital anti-leukemic ability than pure ABT-199. PEG-ABT-199 has potential application in clinical trials to alleviate side effects and improve anti-leukemia ability. Statement of significance: ATB-199, an orally selective inhibitor for BCL2 protein, presents marked activity in relapsed or refractory AML, T-ALL, and CLL patients. However, ABT-199 resistance severely limits the further clinical usage because of off-target effects, non-specific toxicities, and low delivery of drugs. To reduce the side-effects and improve the solubility and bioavailability, ABT-199 was encapsulated into the amphiphilic mPEG-b-PTMC block copolymer by co-assembly method to obtain mPEG-b-PTMC@ABT-199 nanoparticles (PEG-ABT-199). PEG-ABT-199 has several advantages compared with pure ABT-199. 1.PEG-ABT-199 presents better aqueous dispersion and higher efficiencies of loading and encapsulation than pure ABT-199. 2. PEG-ABT-199 substantially enhances the anti-leukemic ability in vitro and in vivo compared with pure ABT-199. 3. PEG-ABT-199 has little effects on normal cells. 4. PEG-ABT-199 can reduce treatment cost.

    Chitin and cuticle proteins form the cuticular layer in the spinning duct of silkworm

    Wang X.Xie X.Xie K.Liu Q....
    12页
    查看更多>>摘要:? 2022Chitin is found in the exoskeleton and peritrophic matrix of arthropods, but recent studies have also identified chitin in the spinning duct of silk-spinning arthropods. Here, we report the presence and function of chitin and cuticle proteins ASSCP1 and ASSCP2 in the spinning duct of silkworm. We show that chitin and these proteins are co-located in the cuticular layer of the spinning duct. Ultrastructural analysis indicates that the cuticular layer has a multilayer structure by layered stacking of the chitin laminae. After knocking down ASSCP1 and ASSCP2, the fine structure of this layer was disrupted, which had negative impacts on the mechanical properties of silk. This work clarifies the function of chitin in the spinning duct of silkworm. Chitin and cuticle proteins are the main components of the cuticular layer, providing the shearing stress during silk fibrillogenesis and regulating the final mechanical properties of silk. Statement of significance: Recent studies have identified chitin in the spinning duct of silk-spinning arthropods. However, the role of chitin in this specific organ remains unclear. This study reports that chitin and cuticle proteins form the cuticular layer, a unique structure of the spinning duct of silkworm. This layer with a precise laminate structure gives the spinning duct flexible properties, provides shearing forces for silk fibrillogenesis, and contributes to silk final mechanical properties. Our work clarifies the component, ultrastructure, and biological significance of the silkworm cuticular layer, describes the specific process of silk fiber formation, and proposes new molecular targets (chitin and cuticle proteins) for the improvement of animal silks.

    Synergistic effects of mechanical stimulation and crimped topography to stimulate natural collagen development for tendon engineering

    Zhang W.Yi B.Wang W.Liu W....
    19页
    查看更多>>摘要:? 2022Suitable scaffold structures and mechanical loading are essential for functional tendon engineering. However, the bipolar fibril structure of native tendon collagen is yet to be recaptured in engineered tendons. This study compared the development of Achilles tendons of postnatal rats with and without (via surgical section) mechanical loading to define the mechanism of mechanical stimulation-mediated tendon development. The results demonstrated that the severed tendons weakened mechanically and exhibited disorganization without a bipolar fibril superstructure. Proteomic analysis revealed differentially expressed key regulatory molecules related to the collagen assembly process, including decreased fibromodulin, keratocan, fibroblast growth factor-1, and increased lumican and collagen5a1 in the severed tendons with immunohistochemical verification. Additionally, a complex regulatory network of mechanical stimulation-mediated collagen assembly in a spatiotemporal manner was also revealed using bioinformatics analysis, wherein PI3K–Akt and HDAC4 may be the predominant signaling pathways. A wavy microgrooved surface (Y = 5.47sin(0.015x)) that biomimics tendon topography was observed to enhance the expression of collagen assembly molecules under mechanical loading, and the aforementioned pathways are particularly involved and verified with their respective inhibitors of LY-294002 and LMK-235. Furthermore, an electrospun crimped nanofiber scaffold (approximately 2 μm fiber diameter and 0.12 crimpness) was fabricated to biomimic the tenogenic niche environment; this was observed to be more effective on enhancing collagen production and assembly under mechanical stimulation. In conclusion, the synergistic effect between topographical niche and mechanical stimulation was observed to be essential for collagen assembly and maturation and should be applied to functional tendon engineering in the future. Statement of significance: In biomaterial-mediated tendon regeneration, mechanical stimulation is essential for tendon collagen assembly. However, the underlying mechanisms remain not fully defined, leading to the failure of the native-like collagen regeneration. In this study, a mechanical stimulation deprivation model of rat tendon was established to reveal the mechanisms in tendon development and define the key regulatory molecules including small leucine-rich proteoglycans, lysyl oxidase and collagen V. After ensuring the importance of biomimetic structure in tendon remodeling, crimped nanofibers were developed to verify these regulatory molecules, and demonstrated that mechanical stimulation significantly enhanced collagen assembly via PIK3 and HDAC4 pathways in biomaterial-regulated tendon regeneration. This study provides more insightful perspectives in the physiologically remodeling progression of tendon collagen and design of tendon scaffolds.

    45S5 Bioglass? works synergistically with siRNA to downregulate the expression of matrix metalloproteinase-9 in diabetic wounds

    Li Y.Zhang X.He D.Ma Z....
    18页
    查看更多>>摘要:? 2022Diabetic chronic wounds are difficult to heal because of the presence of excessive inflammation and high overexpression of matrix metalloproteinase-9 (MMP-9), which greatly affects the quality of life of patients with diabetes and increases the risk of death. Thus, the regulation of excessive inflammation and inhibition of MMP-9 overexpression are effective strategies to improve diabetic wound healing. The present study is the first to demonstrate that ion products of 45S5 Bioglass? (BG) can work with small interfering RNA of MMP9 (MMP9-siRNA) to reduce MMP-9 expression in tissue-forming cells and enhance the synthesis of extracellular matrix proteins (ECMs). Specifically, the BG ionic products can stimulate macrophages to convert to M2 phenotype, thereby creating a proregenerative inflammation microenvironment to indirectly suppress the expression of MMP-9 in tissue-forming cells. Chitosan nanoparticles encapsulating MMP9-siRNA (MMP9-siNP) can directly lower MMP-9 expression in tissue-forming cells. In addition, BG ionic products can promote the vascularization of endothelial cells and ECM protein synthesis by fibroblasts. Thus, injectable BG/sodium alginate (BG/SA) hydrogels loaded with MMP9-siNP can significantly accelerate the healing process of full-thickness excision wounds of diabetic rats by decreasing MMP-9 expression, improving collagen synthesis, and enhancing angiogenesis in the wounds, thereby demonstrating their great application potential in treating diabetic chronic wounds. Statement of significance: Excessive inflammation and high overexpression of MMP-9 have been considered as factors that severely hinder the healing process of diabetic chronic wounds. Effective strategies are required for the regulation of excessive inflammation and inhibition of MMP-9 overexpression to enhance diabetic wound healing. In the present work, an injectable bioglass/sodium alginate (BG/SA) hydrogel loaded with MMP9-siNP was developed; this hydrogel significantly accelerated the healing process of full-thickness excision wounds of diabetic rats by decreasing MMP-9 expression, improving collagen accumulation, and enhancing angiogenesis in the wounds. Thus, the BG/SA hydrogel loaded with MMP9-siNP has great potential for use in healing of diabetic chronic wounds.

    Improved biocompatibility of Zn–Ag-based stent materials by microstructure refinement

    Guillory R.J.Mostaed E.Oliver A.A.Morath L.M....
    11页
    查看更多>>摘要:? 2022 Acta Materialia Inc.The metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here we investigate the biocompatibility of three Zn-based silver (Ag)-containing alloys, ranging from binary to quinary alloy systems. Selected binary and quinary Zn–Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition. This experimental design was intended to clarify the relationship between elemental profile/microstructure and biocompatibility for the Zn–Ag system. We found that the quinary alloy system (Zn–4Ag–0.8Cu–0.6Mn–0.15Zr) performed significantly better, in terms of histomorphometry, than any alloy system we have evaluated to date. Furthermore, when solution treated to increase strength and ductility and reduce the fraction of Ag-rich phases, the quinary alloy's biocompatibility further improved. In vitro corrosion testing and metallographic analysis of in vivo implants demonstrated a more uniform mode of corrosion for the solution treated alloy. We conclude that Zn–Ag alloys can be engineered through alloying to substantially reduce neointimal growth. The positive effect on neointimal growth can be further enhanced by dissolving the AgZn3 precipitates in the Zn matrix to improve the corrosion uniformity. These findings demonstrate that neointimal-forming cells can be regulated by elemental additions and microstructural changes in degradable Zn-based implant materials. Statement of significance: The metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here, selected binary and quinary Zn–Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition. We found that applying a thermal treatment restores mechanical strength and mitigates the strain rate sensitivity of Zn–Ag alloys by dissolving AgZn3 precipitates. Ag-rich nano-precipitates in Zn decrease biocompatibility, a phenomenon that can be counteracted by dissolving the AgZn3 precipitates in the bulk Zn matrix.

    Influence of FeCl3 and H2O2 in corrosion testing of modular taper connections in total hip arthroplasty: An in vitro study

    Bormann T.Nebel L.Muller U.Mai P.T....
    9页
    查看更多>>摘要:? 2022Corrosion at the modular taper junctions in total hip arthroplasty is clinically relevant because wear particles and ions generated at this interface can lead to adverse local tissue reactions or even implant failure. In vitro tribo-corrosion tests are usually accomplished in saline solutions or calf serum (CS), but the addition of H2O2 and FeCl3 have been suggested to mimic inflammatory conditions in the joint. Inflammatory conditions may aggravate corrosive processes and, therefore, should lead in vitro to a more severe and realistic tribo-corrosive material attack. Corrosion testing at 12/14 tapers comprising a CoCrMo head taper and a Ti6Al4V trunnion was accomplished in five electrolytes (Ringer's solution (RS), RS with 30 mM H2O2 and/or 0.7 mM FeCl3 and CS) under dynamical loading for five million cycles. Resulting material loss was determined gravimetrically and by ion analysis. The tribo-corrosive material degradation was investigated by light and electron microscopy. FeCl3 enhanced the material loss from taper connections while H2O2 did not lead to a significant alteration of total material loss. In comparison to pure RS, corrosion testing in CS decreased material loss at the head taper while it increased material loss at the trunnion. The combination of FeCl3 and H2O2 led to an enhanced occurrence of micro cracks at the trunnion surface. Adding FeCl3 and optionally also H2O2 aggravates material loss in in vitro corrosion testing of taper junctions and leads to harsher and probably more realistic testing conditions. Statement of significance: Tribo-corrosive processes at taper connections in hip implants are complex and can lead to major clinical implications. Joint inflammation is assumed to aggravate taper corrosion in vivo, why FeCl3 and H2O2 have been proposed as additives to electrolytes to simulate inflammatory conditions in vitro. Often used fretting test setups, however, do not involve real taper geometries. Besides, testing is often accomplished in saline solutions or calf serum, which do not induce a clinically significant amount of corrosive material degradation. This study presents an approach to increase tribo-corrosive processes at realistic taper connections by adding FeCl3 and/or H2O2. Unlike H2O2, FeCl3 increased material loss from taper connections. The combination of both additives enhanced micro crack formation at the trunnion surfaces.