首页期刊导航|Acta biomaterialia
期刊信息/Journal information
Acta biomaterialia
Elsevier
Acta biomaterialia

Elsevier

1742-7061

Acta biomaterialia/Journal Acta biomaterialiaEIISTPSCI
正式出版
收录年代

    DNA hydrogels as selective biomaterials for specifically capturing DNA, protein and bacteria

    Ma Y.He S.Huang J.
    10页
    查看更多>>摘要:? 2022 Acta Materialia Inc.The ability to selectively capture biomacromolecules and other components from solution has many important applications in biotechnology. However, capturing targets from solution while minimizing interference with the sample solution is still challenging. Here, we describe the design and assembly of a group of DNA hydrogels consisting of long single-stranded DNA produced by rolling amplification reaction (RCA) and crosslinked by DNA duplexes. The developed DNA hydrogels can selectively capture and separate oligonucleotides, proteins and bacteria from solution in situ without complex separation processes. Since such DNA hydrogels can capture their targets in the solution independently, multiple DNA hydrogels that target different compounds can be employed to separate different compounds in the solution at the same time. The work not only expands the application of DNA hydrogels, but also paves the way for developing novel selective biomaterials. Statement of significance: Biomaterials capable of selectively capturing various components have great potential in the field of biotechnology. Here, we proposed a new class of hydrogel composed of crosslinked long DNA strands for selectively capturing DNA, protein and bacteria. Unlike traditional polymeric hydrogels that have small meshes and limit macromolecule diffusion owing to the short distance between two adjacent crosslinks, the described DNA hydrogel has a much larger distance between its crosslinks because of the sequence designability of DNA, which allows easy diffusion of biomacromolecules through its networks and greatly expand its specific surface area. Moreover, the developed DNA hydrogel can also easily combine different aptamers to target different components via the Watson-Crick base pairing without making significant changes in its original design.

    Silk fibroin/cholinium gallate-based architectures as therapeutic tools

    Gomes J.M.Silva S.S.Fernandes E.M.Lobo F.C.M....
    17页
    查看更多>>摘要:? 2022 Acta Materialia Inc.The combination of natural resources with biologically active biocompatible ionic liquids (Bio-IL) is presented as a combinatorial approach for developing tools to manage inflammatory diseases. Innovative biomedical solutions were constructed combining silk fibroin (SF) and Ch[Gallate], a Bio-IL with antioxidant and anti-inflammatory features, as freeze-dried 3D-based sponges. An evaluation of the effect of the Ch[Gallate] concentration (≤3% w/v) on the SF/Ch[Gallate] sponges was studied. Structural changes observed on the sponges revealed that the Ch[Gallate] presence positively affected the β-sheet formation while not influencing the silk native structure, which was suggested by the FTIR and solid-state NMR results, respectively. Also, it was possible to modulate their mechanical properties, antioxidant activity and stability/degradation in an aqueous environment, by changing the Ch[Gallate] concentration. The architectures showed high water uptake ability and a weight loss that follows the controlled Ch[Gallate] release rate studied for 7 days. Furthermore, the sponges supported human adipose stem cells growth and proliferation, up to 7 days. TNF-α, IL-6 (pro-inflammatory) and IL-10 (anti-inflammatory) release quantification from a human monocyte cell line revealed a decrease in the pro-inflammatory cytokines concentrations in samples containing Ch[Gallate]. These outcomes encourage the use of the developed architectures as tissue engineering solutions, potentially targeting inflammation processes. Statement of Significance: Combining natural resources with active biocompatible ionic liquids (Bio-IL) is herein presented as a combinatorial approach for the development of tools to manage inflammatory diseases. We propose using silk fibroin (SF), a natural protein, with cholinium gallate, a Bio-IL, with antioxidant and anti-inflammatory properties, to construct 3D-porous sponges through a sustainable methodology. The morphological features, swelling, and stability of the architectures were controlled by Bio-IL content in the matrices. The sponges were able to support human adipose stem cells growth and proliferation, and their therapeutic effect was proved by the blockage of TNF-α from activated and differentiated THP-1 monocytes. We believe that these bio-friendly and bioactive SF/Bio-IL-based sponges are effective for targeting pathologies with associated inflammatory processes.

    Construction of tissue-engineered human corneal endothelium for corneal endothelial regeneration using a crosslinked amniotic membrane scaffold

    Zhao J.Tian M.Li Y.Su W....
    13页
    查看更多>>摘要:? 2022Descemet's membrane endothelial keratoplasty (DMEK) may provide fast visual rehabilitation in the therapy of corneal endothelial disorders. However, due to shortage of donated corneas, how to construct a corneal endothelial substitute with powerful functions that can be used for DMEK is still unsolved. Herein, we introduced the method of corneal crosslinking (CXL) and conjugated the components of native Descemet's membrane (DM) to improve the mechanical properties and the biocompatibility of denuded amniotic membrane (dAM), further assessed their effects on cell adhesion, proliferation, YAP translocation, and metabolic activity in human corneal endothelial (HCE) cells. Using modified crosslinked dAM (mcdAM) and non-transfected HCE cells, we constructed a tissue-engineered HCE (TE-HCE) and evaluated its functions in cat and monkey models as well. Our results showed that the mechanical properties of mcdAM were improved effectively by CXL, and the adhesion, proliferation, and YAP translocation of HCE cells were dose-dependently improved after ECM modification. The combination of 0.01 mg/mL laminin with 0.1 mg/mL fibronectin showed the highest efficacy. Then, the TE-HCE was constructed in vitro, with a high density of 3612 ± 243 cells/mm2. Results of DMEK in animal models showed that corneal transparency was maintained, accompanied with normal morphology and histological structure of the regenerated corneal endothelium. Therefore, CXL combined with DM-mimic-coating methods could effectively improve the mechanical properties of dAM and enhance the biocompatibility with HCE cells. The constructed TE-HCE had normal histological structure and functioned well in animal models via DMEK, which could be used as a promising powerful equivalent of HCE. Statement of significance: Using high-quality corneal endothelium and an appropriate endothelial keratoplasty is the most effective way for the treatment of corneal endotheliopathy. Descemet's membrane endothelial keratoplasty (DMEK) which can provide better visual acuity, lower immunological rejection rates, and improved graft survival is an ideal surgery at present. However, due to the shortage of donated corneas, it is urgent to find an equivalent substitute of corneal endothelial donor which is suitable for the DMEK surgery to solve the problem of corneal endothelial regeneration. Herein, we introduced the clinical cornea-crosslinking and Descemet's membrane-mimic-coating methods to build the modified crosslinked denuded amniotic membrane scaffold and further constructed a high-quality corneal endothelial functional substitute that can be used in DMEK surgery.

    Ruthenium-induced corneal collagen crosslinking under visible light

    Zibandeh N.Malik A.N.Tas A.Y.Lazoglu I....
    11页
    查看更多>>摘要:? 2022 Acta Materialia Inc.Corneal collagen crosslinking (CXL) is a commonly used minimally invasive surgical technique to prevent the progression of corneal ectasias, such as keratoconus. Unfortunately, riboflavin/UV-A light-based CXL procedures have not been successfully applied to all patients, and result in frequent complications, such as corneal haze and endothelial damage. We propose a new method for corneal crosslinking by using a Ruthenium (Ru) based water-soluble photoinitiator and visible light (430 nm). Tris(bipyridine)ruthenium(II) ([Ru(bpy)3]2+) and sodium persulfate (SPS) mixture covalently crosslinks free tyrosine, histidine, and lysine groups under visible light (400–450 nm), which prevents UV-A light-induced cytotoxicity in an efficient and time saving collagen crosslinking procedure. In this study, we investigated the effects of the Ru/visible blue light procedure on the viability and toxicity of human corneal epithelium, limbal, and stromal cells. Then bovine corneas crosslinked with ruthenium mixture and visible light were characterized, and their biomechanical properties were compared with the customized riboflavin/UV-A crosslinking approach in the clinics. Crosslinked corneas with a ruthenium-based CXL approach showed significantly higher young's modulus compared to riboflavin/UV-A light-based method applied to corneas. In addition, crosslinked corneas with both methods were characterized to evaluate the hydrodynamic behavior, optical transparency, and enzymatic resistance. In all biomechanical, biochemical, and optical tests used here, corneas that were crosslinked with ruthenium-based approach demonstrated better results than that of corneas crosslinked with riboflavin/ UV-A. This study is promising to be translated into a non-surgical therapy for all ectatic corneal pathologies as a result of mild conditions introduced here with visible light exposure and a nontoxic ruthenium-based photoinitiator to the cornea. Statement of significance: Keratoconus, one of the most frequent corneal diseases, could be treated with riboflavin and ultraviolet light-based photo-crosslinking application to the cornea of the patients. Unfortunately, this method has irreversible side effects and cannot be applied to all keratoconus patients. In this study, we exploited the photoactivation behavior of an organoruthenium compound to achieve corneal crosslinking. Ruthenium-based organic complex under visible light demonstrated significantly better biocompatibility and superior biomechanical results than riboflavin and ultraviolet light application. This study promises to translate into a new fast, efficient non-surgical therapy option for all ectatic corneal pathologies.

    An SCPPPQ1/LAM332 protein complex enhances the adhesion and migration of oral epithelial cells: Implications for dentogingival regeneration

    Vuong T.V.Simmons C.A.Master E.R.Ganss B....
    12页
    查看更多>>摘要:? 2022 The AuthorsCommon periodontal disease treatment procedures often fail to restore the structural integrity of the junctional epithelium (JE), the epithelial attachment of the gum to the tooth, leaving the tooth-gum interface prone to bacterial colonization. To address this issue, we introduced a novel bio-inspired protein complex comprised of a proline-rich enamel protein, SCPPPQ1, and laminin 332 (LAM332) to enhance the JE attachment. Using quartz crystal microbalance with dissipation monitoring (QCM-D), we showed that SCPPPQ1 and LAM332 interacted and assembled into a protein complex with high-affinity adsorption of 5.9e?8 [M] for hydroxyapatite (HA), the main component of the mineralized tooth surfaces. We then designed a unique shear device to study the adhesion strength of the oral epithelial cells to HA. The SCPPPQ1/LAM332 complex resulted in a twofold enhancement in adhesion strength of the cells to HA compared to LAM332 (from 31 dyn/cm2 to 63 dyn/cm2). In addition, using a modified wound-healing assay, we showed that gingival epithelial cells demonstrated a significantly high migration rate of 2.7 ± 0.24 μm/min over SCPPPQ1/LAM332-coated surfaces. Our collective data show that this protein complex has the potential to be further developed in designing a bioadhesive to enhance the JE attachment and protect the underlying connective tissue from bacterial invasion. However, its efficacy for wound healing requires further testing in vivo. Statement of significance: This work is the first functional study towards understanding the combined role of the enamel protein SCPPPQ1 and laminin 332 (LAM332) in the epithelial attachment of the gum, the junctional epithelium (JE), to the tooth hydroxyapatite surfaces. Such studies are essential for developing therapeutic approaches to restore the integrity of the JE in the destructive form of gum infection. We have developed a model system that provided the first evidence of the strong interaction between SCPPPQ1 and LAM332 on hydroxyapatite surfaces that favored protein adsorption and subsequently oral epithelial cell attachment and migration. Our collective data strongly suggested using the SCPPPQ1/LAM332 complex to accelerate the reestablishment of the JE after surgical gum removal to facilitate gum regeneration.

    Three-dimensional, biomimetic electrospun scaffolds reinforced with carbon nanotubes for temporomandibular joint disc regeneration

    Gan Z.Zhao Y.Wu Y.Yang W....
    14页
    查看更多>>摘要:? 2022Temporomandibular disorder (TMD) remained a huge clinical challenge, with high prevalence but limited, unstable, and only palliative therapeutic methods available. As one of the most vulnerable sites implicated in TMD, the temporomandibular joint disc (TMJD) displayed a complicated microstructure, region-specific fibrocartilaginous distribution, and poor regenerative property, which all further hindered its functional regeneration. To address the problem, with versatile and relatively simple electrospinning (ELS) technique, our study successfully fabricated a biomimetic, three-dimensional poly (?-caprolactone) (PCL)/polylactide (PLA)/carbon nanotubes (CNTs) disc scaffold, whose biconcave gross anatomy and regionally anisotropic microstructure recapitulating those of the native disc. As in vitro results validated the superior mechanical, bioactive, and regenerative properties of the biomimetic scaffolds with optimal CNTs reinforcement, we further performed in vivo experiments. After verifying its biocompatibility and ectopic fibrochondrogenicity in nude mice subcutaneous implantation models, the scaffolds guided disc regeneration and subchondral bone protection were also confirmed orthotopically in rabbits TMJD defected areas, implying the pivotal role of morphological cues in contact-guided tissue regeneration. In conclusion, our work represents a significant advancement in complex, inhomogeneous tissue engineering, providing promising clinical solutions to intractable TMD ailments. Statement of significance: Complex tissue regeneration remains a huge scientific and clinical challenge. Although frequently implicated in temporomandibular joint disorder (TMD), functional regeneration of injured temporomandibular joint disc (TMJD) is extremely hard to achieve, mainly because of the complex anatomy and microstructure with regionally variant, anisotropic fiber alignments in the native disc. In this study, we developed the biomimetic electrospun scaffold with optimal CNTs reinforcement and regionally anisotropic fiber orientations. The excellent mechanical and bioactive properties were confirmed both in vitro and in vivo, effectively promoting defected discs regeneration in rabbits. Besides demonstrating the crucial role of morphological biomimicry in tissue engineering, our work also presents a feasible clinical solution for complex tissue regeneration.

    An Injectable Nanocomposite Hydrogel Improves Tumor Penetration and Cancer Treatment Efficacy

    Luo F.-Q.Xu W.Zhang J.-Y.Liu R....
    10页
    查看更多>>摘要:? 2022Hydrogel as a local drug depot can increase drug concentration at the tumor site. However, conventional drug-loaded hydrogel is typically formed by direct dissolution of drug molecules inside the hydrogel, which usually suffers from limited drug retention and poor tumor penetration. In this study, a nanocomposite hydrogel consisting of oxaliplatin (OXA)-conjugated G5 polyamidoamine (G5-OXA) and oxidized dextran (Dex-CHO) is constructed to improve local drug delivery. The OXA-containing nanocomposite hydrogel (denoted as PDO gel) is injectable and could maintain in vivo up to more than three weeks, which increases drug retention in tumor tissues. More interestingly, G5-OXA released from the PDO gel show potent tumor penetration mainly through an active transcytosis process. In vivo antitumor studies in an orthotopic 4T1 tumor model show that PDO gel significantly inhibits primary tumor growth as well as the metastasis. In addition, the PDO gel can also activate the immunosuppressive tumor microenvironment through immunogenic cell death effect, and further improves therapeutic efficacy with the combination of PD-1 antibody. These results demonstrate that the nanocomposite hydrogel can simultaneously enhance the retention and penetration of chemotherapeutic drugs via the combination of both advantages of hydrogel and nanoparticles, which provides new insights for the design of local drug delivery systems. Statement of significance: Hydrogel represents an important class of local drug delivery depot. However, conventional drug-loaded hydrogel is usually achieved by direct dissolution of small drug molecules inside the hydrogel, which typically suffers from limited drug retention and poor tumor penetration. Herein, we developed a nanocomposite hydrogel, which could gradually degrade and release drug-conjugated small nanoparticles (~ 6 nm) for improved tumor penetration through the combination of an active transcytosis process and a passive diffusion process. This nanocomposite hydrogel system improved tumor penetration and retention of drug in primary tumors as well as the drug deposition in lymph nodes, which significantly suppressed tumor growth and metastasis.

    Amino acids and doxorubicin as building blocks for metal ion‐driven self‐assembly of biodegradable polyprodrugs for tumor theranostics

    Wang D.Zhang N.Yang T.Zhang Y....
    13页
    查看更多>>摘要:? 2022 Acta Materialia Inc.On-demand designed theranostics nanoagents show promising applications for next-generation precision-and-personalized oncotherapy. Researchers have since aimed to develop nanoplatforms that can efficiently deliver drugs and contrast medium to tumor and release active ingredients in response to tumor microenvironment (TME) conditions. Herein, we propose a modular strategy, and develop a series of nanoplatforms based on metal-coordinated-polyprodrugs for cancer theranostics. The polyprodrugs were synthesized through a click-reaction between amino acid and doxorubicin (DOX) with dipropiolate. The backbones of the polyprodrugs had intrinsic sensitivities to pH and/or GSH, and provided abundant -COOH, -NH2, or -S-S- to chelate with functional metal ions and further self-assembled to form different morphologies. Dicysteine, which contains disulfide bond (-S-S-), was chosen to copolymerize with DOX and triethylene glycol dipropiolate (TEP) to prepare the pH/GSH dual-responsive polyprodrug poly(dicysteine-co-TEP-co-DOX) (pDTD), then separately coordinated with Gd3+, Fe3+, and Mn2+ to construct nanoplatforms pDTD@M (M representing the metal ions). In vitro and in vivo investigations suggest the metal-coordinated-polyprodrug nanoplatforms have good magnetic resonance imaging (MRI) ability and efficient tumor-growth inhibition with high safety. The design strategy of nanoplatforms based on metal-coordinated-polyprodrugs provides a new idea for on-demand construction of promising theranostics agents. Statement of significance: Compared to small molecule antitumor drugs, polymeric drugs have high drug loading ratio and are easily enriched at the tumor site to achieve improved therapy efficacy. This work utilizes click reactions to link amino acids with anticancer drugs to produce polymeric drugs that are degraded in response to tumor microenvironment and released small molecule antitumor drugs mainly in tumor sites, and subtly utilizes the coordination of amino acid to chelate MRI functional metal ion to realize enhanced MRI imaging mediated tumor therapy. This strategy provides a new idea for the convenient construction of polymeric drugs for tumor theranostics.

    Copper-based theranostic nanocatalysts for synergetic photothermal-chemodynamic therapy

    Zuo W.Fan Z.Chen L.Liu J....
    12页
    查看更多>>摘要:? 2022Chemodynamic therapy (CDT) has aroused extensive attention as a potent therapeutic modality. However, its practical application is severely restricted by the strong acidity requirement for Fenton reaction and upregulated antioxidant defense within metastatic breast cancer. Herein, a copper-based single-site nanocatalyst functionalized with carbonic anhydrase inhibitor (CAI) was constructed for magnetic resonance/photoacoustic imaging (MRI/PA)-guided synergetic photothermal therapy (PTT) and CDT. Once reaching tumor sites, the nanocatalyst can be recognized by tumor cell membranes-overexpressed carbonic anhydrase IX (CA IX). Subsequently, the single-site CuII can be reduced to CuI by the tumor-overexpressed glutathione (GSH), which simultaneously impaired the tumor antioxidant defense system and triggered CAI release for inducing intracellular H+ accumulation. Further, the decreased intracellular pH can accelerate the nanocatalyst biodegradation to release more CuII and CAI to participate in next-cycle GSH-depletion and cytoplasm acidification, respectively, thereby continuously supplying CuI and H+ for self-cyclically amplified CDT. Upon laser irradiation, the nanocatalyst can generate local heat, which not only permits PTT but also enhances the nanocatalyst-mediated CDT. Moreover, the suppression of CA IX can hinder the tumor extracellular matrix degradation to prevent tumor metastasis. Overall, this work highlighted the great application prospect in enhancing CDT via tumor acidic/redox microenvironment remodeling, and provides an insightful paradigm for inhibiting breast cancer metastasis. Statement of significance: The practical application of chemodynamic therapy (CDT) is severely restricted by the strong acidity requirement for Fenton reaction and upregulated antioxidant defense within cancer. Herein, we developed a carbonic anhydrase inhibitor (CAI)-functionalized Cu-based nanocatalyst. Once reaching tumor sites, the CuII can be reduced to CuI by the tumor-overexpressed glutathione (GSH), which simultaneously impaired the tumor antioxidant system and triggered CAI release for inducing intracellular H+ accumulation. Further, the decreased intracellular pH can accelerate the nanocatalyst biodegradation to release more CuII and CAI to participate in next-cycle GSH-depletion and cytoplasm acidification, respectively, thus continuously supplying CuI and H+ for self-cyclically amplified CDT. Upon laser irradiation, the nanocatalyst not only permits PTT but also enhances the CDT.

    Tumor microenvironment–responsive versatile “Trojan horse” theranostic nanoplatform for magnetic resonance imaging–guided multimodal synergistic antitumor treatment

    Huang Q.Pan Y.Wang M.Liu Z....
    17页
    查看更多>>摘要:? 2022 Acta Materialia Inc.A natural killer (NK)-92 cell membrane-camouflaged mesoporous MnO2-enveloped Au@Pd (Au@Pd@MnO2) nanoparticles (denoted as APMN NPs)-based versatile biomimetic theranostic nanoplatform was developed for magnetic resonance (MR) imaging-guided multimodal synergistic antitumor treatments. In this core-shell nanostructure, an Au@Pd core induced near-infrared (NIR)-activatable hyperthermal effects and nanozyme catalytic activity, while a mesoporous MnO2 shell not only afforded a high drug-loading capability, tumor microenvironment (TME)-triggered MR imaging and drug release, but also endowed catalase-, glutathione peroxidase-, and Fenton-like activities. Furthermore, the NK-92 cell membrane camouflaging endowed the NPs with enhanced tumor-targeting capability, immune escape function, and membrane protein-mediated tumoral uptake property. The doxorubicin-loaded APMN (D-APMN) NPs exhibited TME-responsive drug release properties. Furthermore, the cellular uptake, in vivo MR imaging, and NIR thermal imaging confirmed the active tumor-targeting capability and TME-responsive MR imaging property of these biomimetic NPs. An antitumor efficacy test, histological analyses, and blood biochemical profiles suggested that the developed D-APMN NPs possessed a high antitumor activity and biosafety in tumor-bearing nude mice. Therefore, the developed APMN NPs held great potential as an intelligent and comprehensive theranostic nanoplatform for tumor-specific bioimaging and TME-responsive multimodality treatment based on photothermal therapy, chemodynamic therapy, and chemotherapy. Statement of significance: Exploring intelligent and comprehensive theranostic nanoplatforms to integrate tumor-specific bioimaging and TME-responsive multimodal therapy effectively is a challenge. Herein, we successfully developed a new kind of NK-92 cell membrane-camouflaged mesoporous MnO2-enveloped Au@Pd nanoparticles (APMN NPs)-based versatile biomimetic theranostic nanoplatform for the potential MR imaging-guided multimodal synergistic antitumor treatments. These NPs could integrate unique structural, optical, multiple-catalytic, paramagnetic, and biological merits of NK-92 cell membrane, Au@Pd cores and mesoporous MnO2 shell in a single nanoplatform. The NK-92 cell membrane camouflaging endowed the NPs with enhanced tumor-targeting capability, immune escape function, and membrane protein–mediated tumoral uptake property. The new information obtained from this study may be beneficial to promote the development of novel TME-responsive versatile “Trojan horse” theranostic nanoplatforms for efficient MR imaging-guided multimodal synergistic treatment.